K) WInActor

Programming Language
WinActor Scenario Script

NTT ADVANCED TECHNOLOGY CORPORATION

Copyright © 2013-2025 NTT, Inc. & NTT ADVANCED TECHNOLOGY CORPORATION

Trademarks

The names described below and other names of companies and products in this document
are trademarks or registered trademarks of their respective companies. The ™, ®, and ©
marks are omitted in this document.

e WinActor is a registered trademark of NTT ADVANCED TECHNOLOGY
CORPORATION.

e Microsoft, Windows™, Internet Explorer, Excel, and VBScript? are trademarks
or registered trademarks of Microsoft Corporation in the United States and
other countries.

*1 The official name of Windows is Microsoft Windows Operating System.

*2 The official name of VBScript is Microsoft Visual Basic Scripting Edition.

e The names of other companies and products are trademarks or registered
trademarks of their respective companies.

About this document

This "Programming Language WinActor Scenario Script" (hereinafter referred to as "this
manual") describes the programming language WinActor Scenario Script that can create
scenarios of WinActor.

This manual is intended for advanced programmers who can create scenarios of WinActor
programmatically rather than in a GUI.

Notes on this manual

e The copyright notice "Copyright © 2013-2025 NTT, Inc. & NTT ADVANCED
TECHNOLOGY CORPORATION" attached to this manual and the provided
software cannot be changed or deleted.

The copyright of this manual belongs to NTT, Inc. and NTT ADVANCED
TECHNOLOGY CORPORATION.

e The descriptions in this manual assume that users understand Windows
operations and functions. For information that is not described in this manual,
see the documents provided by Microsoft.

I

Contents

TrAAEMAIKS ... e i

About this documMENt ... il

(O 03] (=] | £ PRSP i

1. INtrOAUCHION ... 1

2. TerminOlOgY......cccuuuiieiiie e 2

3. Symbols and symbol strings...........ccoeuviiiiiiiiiiiie e 3

I = | = 0 1 1 P 5

4.1 COMMENT ..o e e 5

4.2 NUMDET .. e 5

4.3 B0O0lean ... 5

4.4 Identifier.. ... 6

L Y1 o [U PSTT PR PPURPSPRPPPRRRP 19

4.6 SHUCIUIE ..o 20

AB. 1 Preamble....... e 20

4.6.2 Adapter parameter list...........ooii 21

4.6.3 Verbaltim tuPleooeei i 22

L S @7 =1 0 (U] o] = 23

LTS 1o =Y o F= 1 (o J PR 24

5.1 Scenario COMPOSILIONoiiiiiiiie e 24

5.2 Variable Part.........coooii i 24

5.21 Variable declarationoiiiiiiiiiee e 24

53 Windowmatchrule part..........cooiiiiiii e, 25

5.3.1 window _title CONSt tUPIEcooeiiiiee e, 26

5.3.2 window_class consttuple ... 26

5.3.3 process_name CONSt tUPIE........ccuuriiiiiiiei i 26

534 window_sSize CONStIUPIE ..cooviiiiii e 27

5.3.5 Example of the window match rule part............ccccoei i, 27

5.4 IMaIN PAIT... i 28

5.5 Floating part.......coooeeeiiie e 28

5.6 SUbrouting part.........coooviiiii i 30

5.7 WiIinWatcher parto 31

5.8 EventWatcherpart ... 32

5.9 Breakpoint information part...........ccccooieiiii 35

5.10 Scenario information part...........ccooviiiiiiiii e 36

5171 IMAGE PArt oo 38

5111 Image declaration..........ccooiuiiiiiiiiieie e 38

5.11.2 Example of image declarations............ccccr i 38

5.12 Flowchart information part ..o, 39

5.13 Word dictionary part..........ccoooiiiiiiiiiii e e 39

B. Statement.......ccoovnii 41

I

7.

8.

2 TR I == o2 0] (o o PSP 41
6.2 Group statement............oooiiiiiii s 41
6.3 fstatement ... 41
6.4 whilestatement............oiiiii e 42
B6.4.1T LOOP CONAITION....uuui s 42
6.5 dowhilestatement..............o e 43
6.5.1 LOOP CONAITION....coiiiiiiiiieeee e e e 44
6.6 switchstatement................oo e 44
6.6.1 Casestatement...........ccumieiiiiiii i 44
6.6.2 Default statement...........ooeeiiiiiiii s 45
B.7 fry statement.... ... 45
6.7.1 catch statement......... ... 45
6.8 return statement... ... 45
6.9 scenarioreturn statement.............oooi 46
6.10 break statement...........coooo i 46
6.11 continue statement ... 46
6.12 Call subroutine statement................ 47
6.13 Call scenario statement ... 47
6.14 Adapter action statement.............. 48
6.15 Assignment statement ... 49
6.16 Four arithmetic operations ... 49
EXPreSSION ..o 50
Tl FACIOF e 50
7.2 Constant @XPreSSiONc.ei e 51
7.2.1 Binary operators for constant expressionscccccovvieeiiiiii e 52
7.2.2 Constant factors..........eeeiiii oo 52
7.3 Conditional @XPreSSIiONccocuueiiiiiieiei e 53
7.3.1 Binary operators for conditional expressionsccccccceviiiiiiniiienenne 53
7.3.2 Conditional expression factors...........ccccveiiiiie i 54
Adapter aCtioNScoovuuiiiiiiie e 55
8.1 Automatic reCording........coovvviiiiiiiii e 55
8.1.1 Eventrecording — ClICKoocuiiiiiiiiie e 55
8.1.2 Eventrecording — Set Text.......oooiii e 57
8.1.3 Eventrecording — Select ltem in List...........coooiiiiiiiee, 57
8.1.4 Eventrecording —Select Tab ... 58
8.1.5 Eventrecording—Emulatecccceeeiiiiiiiiii e, 59
8.1.6 Eventrecording — Get Stringcooooieiiriie e 61
8.1.7 Eventrecording — Get Item in List ... 62
8.1.8 Eventrecording — Get Check State...........ccccvvieeeieiiiicc e, 63
8.1.9 Event recording — Get Enable/Disable State.........cccccvveceeeeiiceneencneen, 63
8.1.10 Eventrecording — Get All Items in List.........ccccoiiiiiiniii e, 64
8.1.11 UIAUIOMALION ..cooeeiieeeee e e 64
8.1.12 UIAUtOMAtioN liIDraryoceeeiiiiiiiie e 70

I
8.1.13 UIAUOMAtion dUMPeeiiiieeiieciiiiee e e 72
8.2 Automatic recording (IE)coooriimiiii e 73
8.2.1 IE mode recording — CliCK........ccooiuiiiiiiiiiii e 73
8.2.2 IE mode recording — Set TeXtcocoeiiiiiiiiie e 74
8.2.3 IE mode recording — Select Item in List.........ccccoiiiiiiiiiiieee, 75
8.2.4 IE mode recording — Get StriNgcccoevieeiiieiee e 75
8.2.5 IE mode recording — Get ltem in List.........cccooiiiiiiiii e, 76
8.2.6 IE mode recording — Get Check State..........ccccoiiiiiiiiiiiie, 76
8.2.7 IE mode recording — Get Enable/Disable State............ccccccoeviiiiinennee. 77
8.2.8 IE mode recording — Get Value in Tableccccoccveiiiiiiniiieeeeee, 77
8.2.9 IE mode recording — Get All Items in Listccoooiiiiiiiiiii e, 78
8.3 Action, User, Variable ... 79
8.3.1 Image MatChingoooiiii e 79
8.3.2 Contour MatChing........cuueeiiiiiii e 82
8.3.3 OCR MatChiNGcoeiieiieiiiieiie et 84
8.3.4 Wait for Window Status........ceeeriiiiiieiiee e 86
8.3.5 Wait fOr TIME ..coiiiiii e 87
R TS T o Lo N =Y AR 88
8.3.7 Execute CommaNdcooiiiiiiiiiiee e 89
8.3.8 RUN SCrIPL ... e s 90
8.3.9 RUNPYINON ..o 92
8.3.10 EXCEl OPEratioN.....c.cocueieeiiiiie et e e 94
8.3.11 Clipb0oard.......coooiiiie e 95
8.3.12 Set TO CliPbOard.........uuiiiiiiiee e 96
8.3.13 Get From Clipboard.........coociiiiiiiiee e 96
8.3.14 Waiting DiIalogceiiiiiiiiiiiiie s 96
8.3.15 INPUL DIAIOG ..ceieiniieee et 97
8.3.16 Selection Dialogc.cieiiieiiiie it 97
8.3.17 SOUNA (BUZZET) ..ttt a s 98
8.3.18 SouNd (WAVE fil€)....ce it 98
8.3.19 SetVariable ValUe.........coooiiiiiiiie e 98
8.3.20 Copy Variable Value...........ccooiiiiiii e 99
8.3.21 GetDate and TiMeoooiiiiiiiiiiie e 100
8.3.22 Gt USErNamE......cooi it 101
8.3.23 Four Arithmetic Operationscccooiiiiiiiie e 101
R T S 711 [T U o TS 102
8.3.25 Full/Half-Width CONVErSIONccveeieiiiie e 102
8.3.26 WatCh EVENtS ... 103
8.3.27 Register EventWatChercooo i 103
8.3.28 Cancel EventWatChercoevviiiiiie e 103
8.3.29 IgNore EVeNntsooo i 103
8.4 WinActor Mail, HTTP, JSON ... 104
8.4.1 Mail Reception Settingsc.ooiiiiiiiii e 104
8.4.2 ReCeIVE Malil.....coocooiiieeee e 105
8.4.3 SeleCt Malil......ocoeeiiiiiieee e 106
8.4.4 Change Mail Statec.oooiiiiiiiii e 107
v

Vi

8.4.5 Synchronize Mail FOIdErccoiiiiiii e 107

8.4.6 Delete Processed Mail..........c.cooiiiiiiiiiiiiiiiiieee e 108

847 Delete Malil ... 108

8.4.8 Copy Mail Informationcocoiiiiiiiiie e 108

8.4.9 GetAttached Filenamecccoiiiiiiiiiie e 109
8.4.10 Get Mail Information............coooiiiiiiii e 109

8.4.11 Import Mail Reception Settings.......c..ccccvvveiiiiieei i 110
8.4.12 Gmail Reception Settingscccoioiiiii e 110
8.4.13 Receive GMall.......ooiiiiiiiiiii e 111
8.4.14 Gmail Send Settingsccoooiiiiie i 112
8.4.15 Send GMail ..cooueeiiiie e 112
8418 HTTP oottt e e et s e enneens 113
8.4.17 HTTP (AAVANCET) ...uveeiiieieeiie e 115
8.4.18 WIite JSON ..ot 119
8.4.19 REAU USONoiiiiiiieee ettt enae e 120
8.4.20 Other JSON IIDrariescoocuiiiiiiiiiii e 121

8.4.21 SOCKEL ...t 121

8.5 Libraries not listed in the adapter actionsccccciiiiii 126
9. Notes on restoration of expressions...........cceeeeveeeiiiiiieeeinnnnnn. 127

1. Introduction

The programming language WinActor Scenario Script (hereinafter referred to as WSS) is a
procedural language for advanced programmers which is generated by converting a scenario
of WinActor Ver.7.

WSS is written to a text file with the filename extension of .wss7, which is called a wss7 file.

A ussT file is also generated together with a wss7 file. A set of a uss7 file and a wss7 file can
be loaded into WinActor as a scenario.

For the procedure to save a scenario to uss7 and wss7 files or to load them into a scenario
with WinActor, see "WinActor Operation Manual."

WSS is a procedural language similar to C programming language, but it has less flexibility
because it is closely bound to the scenario of WinActor.

2. Terminology

The following terms are used in this manual. Details are described later.

Table 2-1. Terms

Flowchart Points to a flowchart displayed in the
flowchart area of WinActor

Identifier

Identifier without a value

Reserved identifier

Action name

Subroutine name
JSON type name Appears in JsonWrite adapter

Identifier with values

Writable or read-only identifier

Simple identifier

Number identifier

Special identifier

Compiler generated working identifier

Read-only identifier

| Predefined constant identifier
Non-variable used in the form of assignment Appears in preambles and const tuples

| Attribute identifier
String literal

Simple string literal

Verbatim string literal

Block verbatim string literal

Structure

Preamble

Adapter parameter list

Verbatim tuple

Const tuple

Symbol & symbol string ‘

3. Symbols and symbol strings

The symbols and symbol strings that have meaning in WSS are listed below.

Table 3-1. Symbols and symbol strings

Meaning

Left parenthesis

Usage

Right parenthesis

Left square bracket

Right square bracket

Left curly bracket

Right curly bracket

—~~

At left parenthesis

Verbatim tuples

1] @HHHHI—H—-\/A

Assignment
Addition One of four arithmetic operators, unary
+ operator, binary operator for constant
expressions
Subtraction One of four arithmetic operators, unary
- operator, binary operator for constant
expressions
* Multiplication One of four arithmetic operators, binary
operator for constant expressions
Division One of four arithmetic operators, binary

operator for constant expressions

Addition (Integer)

One of four arithmetic operators, unary
operator, binary operator for constant
expressions

Subtraction (Integer)

One of four arithmetic operators, unary
operator, binary operator for constant
expressions

Multiplication (Integer)

One of four arithmetic operators, binary
operator for constant expressions

Division (Integer)

One of four arithmetic operators, binary
operator for constant expressions

- Equal to Binary operator for constant/conditional
expressions
1= Not equal to Binary operator for constant/conditional

expressions

Greater than or equal to

Binary operator for constant/conditional
expressions

Symbol & symbol string ‘

Meaning

Greater than

Usage

Binary operator for constant/conditional

> :
expressions

< Less than Binary operator for constant/conditional
expressions

<= Less than or equal to Binary operator for constant/conditional

expressions

| Not Unary operator for constant/conditional
) expression

&& And Binary operator for constant expressions
| | Or Binary operator for constant expressions

Regular expression match

Binary operator for constant/conditional
expressions

Regular expression unmatch

Binary operator for constant/conditional
expressions

Quote

Identifiers

Underscore

Identifiers

Double quote

Simple string literals

Verbatim string literal start
symbol

Block verbatim string literal
start symbol

Block verbatim string literal
start symbol

Period

Comma

Semicolon

Dollar sign

Number identifiers, special identifiers,
predefined constant identifiers

Start of comment

End of comment

Start of line comment

Escape sign

See "Naming conventions for strings"

o110
o) -

NN | X TR A |-

ocow
(o -

Number

4. Data types

4.1 Comment

A part between /* and */ is skipped as a comment. It may span multiple lines.

A part from // to the end of the line is also skipped as a comment.

4.2 Number

Numbers include integers and floats, and are represented in decimal notation.

Table 4-1. Numerical compositions
Number ‘ Composition

Integer Digit sequence

Float Digit sequence.Digit sequence

Digit sequence e+/- Digit sequence

Digit sequence.Digit sequence e+/- Digit sequence

"e" means "10 to the power of."
"e" may be a capital “E.”

"e" may be followed by "+" or "-."

"+" or "-" following "e" is optional.

The digit sequence on the right of "e" cannot be omitted.

The string literal of a number, which is embraced with half-width double quotes, may be used
as a number in expressions including constant expressions.

Full-width digits, “+,” “-,” “E,” “e,” and “.” may also be used in notation of the number.

The simple string literal of a digit sequence with commas as thousand separators, which is
embraced with half-width double quotes, is called a comma separated number. It may be
used as a number in expressions including constant expressions.

Full-width digits and commas may also be used in notation of the comma separated numbers.

A comma separated number is always interpreted as a float number even if it includes no
period, “e,” nor “E.” If it is used for an integer operand of an integer operation, a runtime error
occurs.

4.3 Boolean

TRUE or FALSE. The strings TRUE and FALSE also work as Boolean.

4.4 Identifier

Identifiers are global. Variables inside a subroutine should also be declared in the variable
part.

Reserved identifiers and predefined constant identifiers are case insensitive.

Other identifiers are case sensitive.

e Naming conventions for identifiers

Table 4-2. Naming conventions for identifiers
Naming convention ‘ Description

[_alphanumeric]+ An identifier consisting of only alphanumeric characters
and underscores. (Simple identifier)

An identifier that encloses any characters with single
quotes.

Used when creating a name with Japanese characters.

In particular, " (consecutive two single quotes) can be used
as an anonymous identifier to omit a value and indicate to
use a default value.

$[_-alphanumeric.]+ An identifier that begins with $ and consists of
alphanumeric characters, underscores, hyphens, and
periods.
Used for special identifiers and predefined constant
identifiers.

$[numbers]+ Included above, but $[digit sequence] is called the number
identifier.

In the flowchart, it is treated as the name without $.
__work_[0-9][0-9][0-9][0-9] |A name with four digits appended to _ work . This
identifier is generated by a compiler for its work.

The behavior is not guaranteed if changed.

Generated in the variable group __internal__.

In all naming conventions, the backslash character is used to escape the next character.

e Reserved identifier

The following identifiers are called reserved identifiers and are used in program syntax.
They are case insensitive.

The position where these can be used in the syntax is fixed.

It may be used as a simple identifier for a variable name in other places, but the behavior

when a reserved identifier is used as a subroutine name is not guaranteed.
Details of each reserved identifier are described later.

Table 4-3. Reserved identifiers

Name

var_group

const

window_rule

window_title

window_class

process_name

window_size

main
group
try
catch

callsub

return

call_scenario

scenario_return

dowhile

while

continue

break

count
start
end

counter

file

dbsource

user

password
table
template_and_data

json_object

switch

case
default

Some names include

if
then

else

winactor

sub

localvars

chkempty

floating

tag

rules

window_rule_ref

throw

error

subref

breakpoint_info

scenario_info

images

node_id_count

flow_divide_info

translation

true

false

istrue

isfalse

strcmp

strcasecmp

e Special identifier

Special identifiers can be used in expressions as special variables.
They should be written in all caps.

"-," and if a name matches a special identifier, "-" will be regarded as a

part of the special identifier and will not be interpreted as a subtraction symbol.
For available special identifiers, see “Special variables” in the "WinActor Operation Manual."

Read only special variables cannot be assigned.

e Predefined constant identifier

The following identifiers are called predefined constant identifiers.

They are case insensitive.

These are prepared to describe numbers or strings by name, such as an action mode.
Predefined constant identifiers are all read-only.

They can be used in expressions and constant expressions.

Table 4-4. Predefined constant identifiers

Name Value

SWIN32.WaitSettingOption "specified_option_info"
SWIN32.WaitSettingScenario "specified_scenario_info"
SWIN32.WaitSettingNode "specified_node"
$SelectTabWin32.index "index"
$SelectTabWin32.text "text"
$GetListWin32.index "index"
$GetListWin32.text "text"
$SelectListWin32.index "index"
$SelectListWin32.text "text"
$GetListlE8.index "index"
$GetListIE8.text "text"
$SelectListIE8.index "index"
$SelectListIE8.text "text"
$TimerWait.Sleep 1

$TimerWait.Until 2

$TimerWait.Check 3

$TimerWait.ScenariolnfoDateFormat

"specified_scenario_info"

$TimerWait.OptionInfoDateFormat

"specified_option_info"

$TimerWait.OptionInfoTimeZone

"specified_option_info"

$TimerWait.DefaultTimeZone

"default_os"

$Window.Front

$Window.Behind

$Window.Enable

$Window.Disable

$Window.Appear

$Window.Disappear

$Window.WaitFor

$Window.CheckOnly

$ClipBoard.Set

$ClipBoard.Get

N =~ N~ OOV AW IN|~

$IE.WaitSettingOption

Name Value

"specified_option_info"

$IE.WaitSettingScenario

"specified_scenario_info"

$IE.WaitSettingNode

"specified_node"

$IEGetTablelnfo.GetCell "getcell"
$IEGetTablelnfo.ExistCell "existcell"
$IEGetTableInfo.GetRow "getrow"
$IEGetTablelnfo.GetColumn "getcolumn”
$IEGetTablelnfo.GetAll "getall"
$WaitBox.Confirm 1
$WaitBox.Query 2
$GetDateTime.DateTime1 1
$GetDateTime.Date 2
$GetDateTime.Time 3

$GetDateTime.ScenariolnfoDateFormat

"specified_scenario_info"

$GetDateTime.OptionInfoDateFormat

"specified_option_info"

$GetDateTime.OptionInfoTimeZone

"specified_option_info"

$GetDateTime.DefaultTimeZone "default_os"
$Calculate.Plus 1
$Calculate.Minus 2
$Calculate.Mul 3
$Calculate.Div 4
$Launcher.Single 1
$Launcher.Multi 2
$Launcher.WaitForEnd 3
$FullHalfwidth. ToFullWidth "to_fullwidth"
$FullHalfwidth. ToHalfWidth "to_halfwidth"
$Excel.GetValue "get_value"
$Excel.SetValue "set_value"
$Excel.RunMacro "run_macro"
$ImageMatch.Check 1
$ImageMatch.LeftClick 2
$ImageMatch.RightClick 3
$ImageMatch.LeftDouble 4
$ImageMatch.RightDouble 5
$ImageMatch.Move 6
$ImageMatch.LeftTriple 7
$ImageMatch.RightTriple 8

Name Value

$ImageMatch.LeftClickDrag 9
$ImageMatch.RightClickDrag 10
$ImageMatch.Same 0
$ImageMatch.Half 1
$IlmageMatch.Quarter 2
$ImageMatch.StartPoint_LeftTop "LeftTop"
$ImageMatch.StartPoint_LeftBottom "LeftBottom"
$ImageMatch.StartPoint_RightTop "RightTop"
$ImageMatch.StartPoint_RightBottom "RightBottom"
$ImageMatch.Coordinate_Direct "DIRECT"
$ImageMatch.Coordinate_Percent "PERCENT"
$ImageMatch.Path_File "FilePath"
$ImageMatch.Path_Folder "FolderPath"
$ImageMatch.SelectShape_Ellipse "Ellipse"
$ImageMatch.SelectShape_Rectangle "Rect"
$OutlineMatch.Check 1
$OutlineMatch.LeftClick 2
$OutlineMatch.RightClick 3
$OutlineMatch.LeftDouble 4
$OutlineMatch.RightDouble 5
$OutlineMatch.Move 6
$O0utlineMatch.LeftTriple 7
$QOutlineMatch.RightTriple 8
$OutlineMatch.LeftClickDrag 9
$OutlineMatch.RightClickDrag 10
$OutlineMatch.Same 0
$OutlineMatch.Half 1
$QOutlineMatch.Quarter 2
$OutlineMatch.LowPrecision 1
$OutlineMatch.MiddlePrecision 2
$O0utlineMatch.HighPrecision 3
$O0utlineMatch.StartPoint_LeftTop "LeftTop"
$O0utlineMatch.StartPoint_LeftBottom "LeftBottom"
$OutlineMatch.StartPoint_RightTop "RightTop"
$OutlineMatch.StartPoint_RightBottom "RightBottom"
$O0utlineMatch.Coordinate_Direct "DIRECT"
$O0utlineMatch.Coordinate _Percent "PERCENT"

Name Value

$OutlineMatch.Path_File "FilePath"
$OutlineMatch.Path_Folder "FolderPath"
$OCRMatch.Check 1
$OCRMatch.LeftClick 2
$OCRMatch.RightClick 3
$OCRMatch.LeftDouble 4
$OCRMatch.RightDouble 5
$OCRMatch.Move 6
$OCRMatch.LeftTriple 7
$OCRMatch.RightTriple 8
$OCRMatch.LeftClickDrag 9
$OCRMatch.RightClickDrag 10
$OCRMatch.StartPoint_LeftTop "LeftTop"
$OCRMatch.StartPoint_LeftBottom "LeftBottom"
$OCRMatch.StartPoint_RightTop "RightTop"
$OCRMatch.StartPoint_RightBottom "RightBottom"
$OCRMatch.Coordinate_Direct "DIRECT"
$OCRMatch.Coordinate_Percent "PERCENT"
SHTTP.Get "get"
SHTTP.Put "put"
SHTTP.Post "post"
$HTTP2.RawFormat false
$HTTP2.JSONFormat true
$MailReceive.OneByOne "ONE_BY_ON"
$MailReceive.GetAll "GET_ALL"
$MailReceive.NumOnly "NUM_ONLY"
$MailReceive.Wait "RECEIVE_WAIT"

$MailReceive.Error

"RETURN_ERROR"

$MailReceive.MailNum

"RETURN_MAIL_NUM"

$MailSelect.Top

"MAIL_TOP"

$MailSelect.NoProcessedTop

"MAIL_NO_PROCESSED"

$MailSelect.ProcessedTop

"MAIL_PROCESSED"

$MailSelect.Next

"MAIL_NEXT"

$MailSelect.NextNoProcessed

"MAIL_NEXT_NO_PROCESSED"

$MailSelect.NextProcessed

"MAIL_NEXT_PROCESSED"

$MailStatusChg.Processed

"PROCESSED"

$MailStatusChg.NoProcessed

"NO_PROCESSED"

I
$MailCopyClip.UniquelD "UID"
$MailCopyClip.FolderName "DIR"
$MailCopyClip.Status "STAT"
$MailCopyClip.SendDate "SEND_DATE"
$MailCopyClip.From "FROM"
$MailCopyClip.Subject "SUBJECT"
$MailCopyClip.Body "MESSAGE"
$MailCopyClip.NumberOfAttached "ATTACHMENT"
$MailRule.Subject "SUBJECT"
$MailRule.To "TO"
$MailRule.From "FROM"
$MailRule.Include "CONTAIN"
$MailRule.AtFirst "FIRST"
$MailRule.AtLast "LAST"
$MailRule.Equal "EQUAL"
$MailRule.Regex "REGULAR_EXPRESSION"
$MailAuth.UserPass "USER_PASS"
$MailRule. APOP "APOP"
$GmailReceive.OneByOne "ONE_BY_ON"
$GmailReceive.GetAll "GET_ALL"
$GmailReceive.NumOnly "NUM_ONLY™"
$GmailReceive.Wait "RECEIVE_WAIT"
$GmailReceive.Error "RETURN_ERROR"
$GmailReceive.MailNum "RETURN_MAIL_NUM"
$WindowRule.Unspecified "NOSPECIFIED"
$WindowRule.ExactMatch "STRING_EQUALS"
$WindowRule.PartialMatch "CONTAINS"
$WindowRule.AtFirst "BEGINS"
$WindowRule.AtLast "ENDS"
$WindowRule.Regex "REGEX"
$WindowRule.Equal "EQUALS"
$WindowRule.GTE "GTE"
$WindowRule.LTE "LTE"
$SCENARIO_INFO.DefaultTimeZone "default_os"
$SCENARIO_INFO.DefaultDateFormat "WinActor.Main.Common.TimeFormat"
$SCENARIO_INFO.WaitSettingOption "specified_option_info"
$SCENARIO_INFO.WaitSettingScenario "specifed_scenario_info"

13

Name Value

$UIA.CommonPattern "CommonPattern”
SUIA.WaitSettingOption "option"
SUIA.WaitSettingScenario "scenario”
SUIA.WaitSettingNode "node"

SUIA WaitForWindow "window"

$UIA WaitForControl "element"

$UIA.ExpandCollapsePattern

"ExpandCollapsePattern”

$UIA.InvokePattern

"InvokePattern"

$UIA.ScrollPattern

"ScrollPattern"”

$UIA.SelectionPattern

"SelectionPattern”

$UIA.SelectionltemPattern

"SelectionltemPattern”

SUIA. TogglePattern

"TogglePattern"

$UIA.ValuePattern

"ValuePattern"

$UIA.MouseExtensionPattern

"MouseExtensionPattern”

$UIA.UnknownPattern "Unknown"
SUIA.GetName "GetName"
SUIA.Expand "Expand"
SUIA.Collapse "Collapse"
$UIA.Invoke "Invoke"

$UIA. IsHorizontallyScrollable

"IsHorizontallyScrollable"

SUIA.GetHorizontalViewportRatio

"GetHorizontalViewportRatio"

$UIA.GetHorizontalViewportSize

"GetHorizontalViewportSize"

$UIA.HorizontalScroll

"HorizontalScroll"

$UIA IsVerticallyScrollable

"IsVerticallyScrollable"

SUIA.GetVerticalViewportRatio "GetVerticalViewportRatio"
SUIA.GetVerticalViewportSize "GetVerticalViewportSize"
$UIA VerticalScroll "VerticalScroll"

$UIA. TwoWayScroll "TwoWayScroll"

$UIA.IsMultiSelectable

"IsMultiSelectable"

$UIA.IsSelectionNeeded

"IsSelectionNeeded"

SUIA.GetSelectionByTexts

"GetSelectionByTexts"

$UIA.GetSelectionByIndexes

"GetSelectionBylndexes"

$UIA SelectlitemByText

"SelectltemByText"

$UIA . SelectlitemByIndex

"SelectltemBylIndex"

$UIA.IsSelected "IsSelected"
$UIA . SelectAdditionally "SelectAdditionally”
$UIA.Unselect "Unselect"

Name Value

$UIA.SelectOne "SelectOne"
SUIA.Toggle "Toggle"
SUIA.GetToggleState "GetToggleState"
$UIA.IsReadOnly "IsReadOnly"
SUIA.GetValue "GetValue"

$UIA. SetValue "SetValue"

$UIA.GetBoxCenterPosition

"GetBoxCenterPosition"

$UIA.GetBoxPositions

"GetBoxPositions"

$UIA.MoveToTheElementCenter

"MoveMousePosotionToCenter”

$UIA.LeftClickTheElementCenter

"MoveMousePosotionToCenterAndClick
LeftButton"

$UIA RightClickTheElementCenter

"MoveMousePosotionToCenterAndClick

RightButton"
$UIA.Unknown "Unknown"
$UIA.LargeDecrement "LargeDecrement"

$UIA.SmallDecrement

"SmallDecrement”

$SUIA Largelncrement

"Largelncrement”

$UIA.Smalllncrement

"Smallincrement”

$SUIA.NoAmount

"NoAmount"

$UIA.ModeNormal

"SetValueModeNormal"

SUIA.ModeKeyEvent

"SetValueModeKeyEvent"

$UIA.ModeExcelCell

"SetValueModeExcelCell"

SUIADUMP.WaitSettingOption

"specified_option_info"

SUIADUMP.WaitSettingScenario

"specified_scenario_info"

SUIADUMP.WaitSettingNode

"specified_node"

STAG.TopLeft

"AREA_TOP_LEFT"

$TAG.TopCenter

"AREA_TOP_CENTER"

$TAG.TopRight

"AREA_TOP_RIGHT"

$TAG.CenterlLeft

"AREA_CENTER_LEFT"

$TAG.CenterCenter

"AREA_CENTER_CENTER"

$TAG.CenterRight

"AREA_CENTER_RIGHT"

$TAG.BottomLeft

"AREA_BOTTOM_LEFT"

$TAG.BottomCenter

"AREA_BOTTOM_CENTER"

$TAG.BottomRight

"AREA_BOTTOM_RIGHT"

$EVENT.UpdateFile

"UPDATE_FILE"

$EVENT.UpdateFolder "UPDATE_FOLDER"
$EVENT.SpecifiedTime "SPECIFIED_TIME"
$EVENT.Monthly "MONTHLY"

Name Value

$SEVENT.Weekly "WEEKLY"
$SEVENT.Everyday "EVERYDAY"
$SEVENT.Hour "HOUR"
$EVENT.Minute "MINUTE"
$EVENT.WindowState "WINDOW_STATE"
$EVENT.Mail "MAIL"
$SEVENT.DAY "USER"
$SEVENT.STARTDAY "START"
SEVENT.LASTDAY "END"
$EVENT.Mon "
$EVENT.Tue "2"
$EVENT.Wed "4"
$SEVENT.Thu "8"
$SEVENT.Fri "16"
$EVENT.Sat "32"
$EVENT.Sun "64"
$SOCKET.ActionException "7 o3 A
$SOCKET.ActionExceptionEN "ActionException"
$SOCKET.CharASCI| "ASCII"
$SOCKET.CharUTF-16LE "utf-16LEN"
$SOCKET.CharUTF-16LE-BOM "utf-16LE "
$SOCKET.CharUTF-16BE "utf-16BEN"
$SOCKET.CharUTF-16BE-BOM "utf-16BE"
$SOCKET.CharUTF-8 "utf-8n"
$SOCKET.CharUTF-8-BOM "utf-8"
$SOCKET.CharShift-JIS "shift_jis"
$SOCKET.CharEUC-JP "euc-jp"
$SOCKET.NewLineCRLF "CRLF"
$SOCKET.NewLineCR "CR"
$SOCKET.NewLineLF "LF"
$SOCKET.NewLineNONE "NONE"
$SOCKET.EndFin "Fin"
$SOCKET.EndSize "Size"
$SOCKET.EndEmpty "Empty"

e Action name

The identifiers that represent action names are as follows. They are case insensitive.

Table 4-5. Action names

ClickWin32

SetTextWin32

SelectListWin32

SelectTabWin32

EmulationWin32

GetTextWin32

GetListWin32

GetCheckWin32

GetEnableWin32

GetAllListWin32

ClickIE8

SetTextIE8

SelectListIE8

GetTextIE8

GetListIE8

GetCheckIE8

GetEnablelE8

GetTableinfolE8

GetAlIListIE8

SendText

ImageMatch

OutlineMatch

OCRMatch

WindowStateWait

TimerWait

InputBox

SelectBox

WaitBox

SetVariable

CopyVariable

GetDateTime

GetUserName

Calculate

CountUp

PlaySound

17

Beep

Speaker

Launcher
Clipboard
SetToClipboard
GetFromClipboard
Script

TextConvert

Excel

MailReceive
MailSelect
MailStatusChg
MailSync

MailRemove

MailRemoveProcessed

MailCopyClip
MailAttachName
MailGetlnfo

MailReceiveSet

MailReceivelmport

GmailReceiveSet

GmailReceive
GmailSendSet
GmailSend
Http

Hitp2

JsonWrite

JsonRead

UlAutomation

UiaDump

UiaExpandMenu

UiaCollapseMenu
UiaClick
UiaGetltemTextInList
UiaGetltemIndexInList
UiaGetAllltemTextInList
UiaSelectltemTextInList

18

UiaSelectltemIndexInList
UiaSelectTab
UiaSelectRadioButton
UiaGetText

UiaSetText
UiaSetChecked
EventAdd

EventsWatch

EventRemove

Eventsignore
Socket

4.5 String

e String literals

Table 4-6. String literals

Simple string literal

Verbatim string literal

Block verbatim string literal

¢ Naming conventions for strings

Table 4-7. Naming conventions for strings

Naming convention ‘ Description

" xn

Characters enclosed in double quotes make a simple string
literal.

It may span multiple lines.

The \ (backslash) is an escape character and has the following
meanings with the next character.

For a string that span multiple lines, the escape character at the
end of a line is ignored. Even if the escape character is written at
the end of a line, it is not connected to the next line.

\\ backslash
\0 null

\b backspace
\r return

\n linefeed

Naming convention ‘ Description
\f formfeed
\t horizontal tab
\v vertical tab
@".*" A string starting with @" and ending with " is a verbatim string
literal.

A backslash character has no special meaning and is treated as
a backslash character itself.

To include a double quote in the string, write
double quotes).

Assumed to be used for a path name of a file or a folder.

(consecutive two

@"""[\s]*$ When a line ends with @"", all characters from the next line to
the line of only """ are treated as a string. This is a block verbatim
e string literal.

No escape sequence is available.
Assumed to be used for script or annotation of a script adapter.

@"""\s]*$ When a line ends with @""”, all characters from the next line to

the line of only ™" are treated as a string. This is a block verbatim

AMNS]* ?[\s]*$ | string literal.

No escape sequence is available.

Assumed to be used for Python script or annotation of a script
adapter. When either of these notations are included in an
annotation or a comment of Python script, the result is indefinite.

4.6 Structure
46.1 Preamble

A preamble is used to describe node attributes such as "name" and "comment.”

If the "isclosed" attribute is set to true, a node will be displayed in a closed style in the
flowchart.

In particular, the ID attribute is referred to by a sticky note or a breakpoint.
The nodes referring to the ID attribute are described later.

A position where a preamble can be placed is fixed.

A preamble is optional.

If omitted, the node name in the flowchart will be a fixed name for each node, and the
comment will be empty.

Details of the constant expression are described later.

e How to write a preamble

| [Attribute identifier = Constant expression, ...]

Write the "Attribute identifier = Constant expression" parts separated by commas inside the
left and right square brackets.

The number of "Attribute identifier = Constant expression"” parts can be 0.
Valid attribute identifiers are defined depending on the place of the preamble.
Usually in a node, "name" and "comment" attributes are valid.

"name" attribute corresponds to the name in a node property and "comment" attribute
corresponds to the comment.

The attributes specific to each preamble are described later.

e Example of a preamble

| [name = "Decision group", comment = "Decision for each input", isclosed = true]

4.6.2 Adapter parameter list

e How to write an adapter parameter list

| (Attribute identifier|String<Identifier> = Actual parameter, ...)

Start with (. and end with). Write adapter parameters inside the parentheses separated by
commas. Some are only ().

"<|dentifier>" has meaning only in a specific adapter. (Described later.)

The "Attribute identifier|String<ldentifier> = " part is optional depending on where it is used.

Write the following elements in the "Actual parameter" part. You cannot write a conditional
expression.

Table 4-8. Elements of actual parameters
Element ‘ Remarks

Expression Expressions may not be allowed depending on the attribute of the
adapter. (Described later)

Constant expression

Verbatim tuple

Adapter parameter list

e Examples of adapter parameter lists

Example1: WinActor.SendText adapter

21

window_rule_ref = "Untitled-Notepad",
control = (instance<true> = 0, text<true> = "Untitled - Notepad", position<true> = ret01),
value = var01,
sendcr = true,
verify = true,
capture = (imageid = "img_20190613172532792", x = 409, y = 10)
/I An example of using an adapter parameter list in the actual parameter part

Example 2: WinActor.EmulationWin32 adapter parameter list
(

window_rule_ref = "Window",
action = @(Wait, 300), /I An example of using a verbatim tuple
capture = (imageid ="_",x =0,y =0)

Example 3: WinActor.SelectBox adapter parameter list
(

message = "Select",
items = ("Red", "Blue", "White") // An example of omitting "attribute identifier ="

4.6.3 Verbatim tuple

A verbatim tuple is a structure that consists of an identifier, a string, or a number.
It may include a constant expression to get a string or a number.

It is assumed to be used for writing mouse actions of the emulation adapter.

e How to write a verbatim tuple

| @(Identifier|String|Number|(Constant expression) , ...)

Start with @(and end with). Write identifiers, strings, or numbers inside the parentheses
separated by commas.

Enclose constant expressions in (and). If not enclosed, a syntax error will occur.

An identifier is simply treated as a name. Even if the identifier has been declared as a
constant, the value will not be used.

Details of the constant declaration are described later.

e Example of verbatim tuples

| action = (@Mouse, L, DOWN, 421, 28, LEFTTOP, D, D),

22

@(Mouse, L, UP, 421, 28, LEFTTOP, D, D),
@(Wait, 1719),

@(Mouse, L, DOWN, 62, 459, LEFTTOP, D, D),
@(Mouse, L, UP, 62, 459, LEFTTOP, D, D),
@(Wait, 695),

@(Mouse, L, DOWN, 309, 446, LEFTTOP, D, D),
@(Mouse, L, UP, 309, 446, LEFTTOP, D, D),
@(Wait, ('Short wait')))

"Short wait" is assumed to be declared as a constant.

4.6.4 Const tuple

A const tuple is used in the following places. It gives a constant to a name.

Table 4-9. Where to use constant tuples

Where to use constant tuples

Window match rule part

Sticky note for floating part

Breakpoint information part

Scenario information part

Image part

Flowchart information part

e How to write a constant tuple

| (Attribute identifier|String = Constant expression, ...)

Start with (and end with). Write constant expressions inside the parentheses separated by
commas.

An attribute identifier or a string is written on the left side. If its string expression is the same,
it is regarded as the same name. (Example: abc and "abc" are the same)

An error will occur if attribute identifiers or strings are duplicated.

23

H. Scenario

5.1 Scenario composition

A scenario is composed of multiple types of parts and should be written in the following order.

The required number of parts is determined by each type of the part.

Table 5-1. Scenario composition

No. Name Required number
€ |Variable part 0 or more
@ |Window match rule part 0 or more
9 Main part 1

@ |Floating part 0 or more
@ |Subroutine part 0 or more
@ |Winwatcher part Oor1

0 Breakpoint information part Oor1

Q Scenario information part 1

© |Image part Oor1

(@ |Flowchart information part 1

@ Word dictionary part Oor1

5.2 Variable part
e Syntax

| Var_group Group name = (Variable declaration , ...)

e Description

Write variable declarations and constant declarations.
You can write multiple variables in one group.

Write "Group name" with a string or an identifier.

"Group name =" is optional.
You can write 0 or more variable declarations by separating them with commas.

5.2.1 Variable declaration

e Syntax

| const Identifier = Constant expression Preamble

e Description

Variable declaration and constant declaration are possible.

It becomes a variable declaration if "const" is omitted, and it becomes a constant declaration
if "const" is given.

In the case of variable declaration, "= Constant expression” is optional. If it is written, it
becomes the initial value.

The initial value is required for a constant declaration.
Another value cannot be assigned to an identifier with "const."

An identifier with "const" can be used in a constant expression.

The identifier must to be unique within a scenario. It cannot be the same even in different
variable groups.

The initial value of a variable in which the mask column is checked in the Variable list pane
of WinActor will not be output to the wss7 file.

"mask = true" will be output to the preamble.

If "mask = true" is specified in the preamble of the variable declaration and the initial value is
omitted, WinActor will use the initial value stored in the uss7 file.

5.3 Window match rule part
e Syntax

Window_rule WinID name Preamble = (
window_title = Const tuple,
window_class = Const tuple,
process_name = Const tuple,
window_size = Const tuple

e Description

The window match rule part is assumed to be generated by WinActor itself and edited in
WSS as needed.

25

Write WinID name with a string. An error will occur if it is duplicated in the window match rule

part.
The only valid attribute in the preamble is the comment.

5.3.1 window title const tuple

e Syntax

| (original_value = Title name string at capture, pattern = Title name string for matching, rule = rule) |

e Predefined constants that can be specified in "rule"

Table 5-2. window_title rules

Predefined constant Description

$WindowRule.Unspecified Not specified
$WindowRule.ExactMatch Match
$WindowRule.PartialMatch Partial match
$WindowRule.AtFirst Prefix match
$WindowRule.AtLast Suffix match
$WindowRule.Regex Regular expression

5.3.2 window_class const tuple

e Syntax

| (original_value = Class name string at capture, pattern = Class name string for matching, rule = rule) |

e Predefined constants that can be specified in "rule"

Table 5-3. window_class rules

Predefined constant Description

$WindowRule.Unspecified Not specified
$WindowRule.ExactMatch Match

5.3.3 process_name const tuple

e Syntax

| (original_value = Process name string at capture, pattern = Process name string for matching, rule = rule) |

26

e Predefined constants that can be specified in "rule"

Table 5-4. process_name rules

Predefined constant Description

$WindowRule.Unspecified Not specified
$WindowRule.ExactMatch Match

5.3.4 window_size const tuple

e Syntax

| (original_value = Window size string at capture, pattern = Window size string for matching, rule = rule) |

The window size string at capture or for matching is a string in which the width and the height
are connected by a comma. Although it has the same notation as a comma separated number,
it is a string of two numeric values, and cannot be treated as one numeric value here.

e Predefined constants that can be specified in "rule"

Table 5-5. window_size rules

Predefined constant Description

$WindowRule.Unspecified Not specified
$WindowRule.Equal Match
$WindowRule.GTE Greater than or equal to
$WindowRule.LTE Less than or equal to

5.3.5 Example of the window match rule part

Window_rule "Untitled-Notepad" [comment = ™] = (

window_title = (original_value = "Untitled - Notepad", pattern = "Untitled - Notepad", rule =
$WindowRule.ExactMatch),

window_class = (original_value = "Notepad", pattern = "Notepad", rule = $WindowRule.ExactMatch),

process_name = (original_value = "notepad.exe", pattern = "notepad.exe", rule =
$WindowRule.ExactMatch),

window_size = (original_value = "818,388", pattern = "818,388", rule = $WindowRule.Unspecified)

5.4 Main part
e Syntax

main Preamble {
Sequence of statements

e Description

This is the part that corresponds to the start to end of a scenario in the flowchart.
The statements written in the main part will be executed in order.
There are no valid attributes in the preamble of the main part.

5.5 Floating part
e Syntax

floating Preamble

{
tag Preamble
(tag_comment = Comment string, target = Constant expression, area = Relative position);

or

floating Preamble

{

Sequence of statements

e Description

In the floating part, you can write one sticky note (tag) or multiple statements.

To associate a sticky note with a node, write the ID attribute in the preamble of the node and
specify the ID number in the target attribute of "tag."

The ID number must be an integer, an empty string, or a string that becomes an integer.

If an empty string is specified as an ID number, the sticky note is interpreted as an
independent one which has no association

Both the tag_comment attribute and target attribute are optional, and it is assumed that an
empty string is specified when omitted.

A “Relative position” of the sticky note may be specified in the area attribute. It must be one
of the “Relative position”s in the following table.

28

The specification to the area attribute may be omitted. In this case, it is interpreted as if the
absolute position is specified.

On the flowchart of WinActor, no pull-down menu corresponding to the area attribute exists
because the relative position is determined automatically using the position of the sticky note.

Table 5-6. Relative positons of a sticky note

Relative position ‘ Description
$STAG.TopLeft Upper left
$TAG.TopCenter Upper middle
$TAG.TopRight Upper right
$TAG.CenterLeft Middle left
$TAG.CenterCenter Middle
$TAG.CenterRight Middle right
$TAG.BottomLeft Lower left
$TAG.BottomCenter Lower middle
$TAG.BottomRight Lower right

When there are multiple statements, the compiler creates a group node to combine the
statements.

Write a tab (tab_id_ref) and node position (x, y) in the flowchart in the preamble of "floating."

For "tab_id_ref," give a string specified in "tab_id" of the flowchart information part.

You can write a name (name) and comment (comment) in the preamble of "tag."

In the preamble of “floating” that has statements, you can specify invisibility (TagVisible) of
the sticky note in addition to a tab and a note position.

Write “TagVisible = false” in the preamble to make it invisible.

e Example of the floating part

floating [x = 216, y = 37.5, tab_id_ref = 0]
{
tag [name = "Sticky note", comment = "Sticky note of TimerWait"]
(tag_comment = "Independent wait", target = 80); Il target = "80" is also acceptable

floating [ID = 80, x = 1305, y = 6, tab_id_ref = 0]

{
WinActor.TimerWait [name = "Independent place wait", comment = "]
(mode = $TimerWait.Sleep,
timeout = 10,
date_format = $TimerWait.ScenariolnfoDateFormat,
timezone = $TimerWait.ScenariolnfoTimeZone
);
}

5.6 Subroutine part
e Syntax

sub Subroutine name Preamble
localvars(Sequence of variable names) ,
chkempty(true or false)

Sequence of statements

e Description

Write the subroutine name with a string or an identifier. Duplicate names will result in an error.
In the preamble, write the tab (tab_id_ref attribute) and node position (x attribute, y attribute)
in the flowchart, and the folded state (isclosed attribute, value is true or false). The name
attribute has no effect in the preamble. Write “TagVisible = false” in the preamble to make the
associated sticky notes invisible.

"chkempty(true or false)" is optional. When omitting, do not write the comma immediately
before it.

Variable names in "localvars" must be declared as variables in the variable part.

After the execution of the subroutine, the variable values will be restored to the values before
the execution.

In some libraries, the sequence of statements for the subroutine is hidden. The hidden
sequence of statements will not be displayed in WSS and cannot be changed.

30

5.7 WinWatcher part
e Syntax

Rules = (
(window_rule_ref = Window_rule WinID name, WinWatcher action), ...

¢ WinWatcher actions

One of the following three:
Table 5-7. WinWatcher actions

WinWatcher action Description
throw(exception name) Raises an exception. Write an exception name with a
string.
subref(subroutine name) Runs a subroutine.

Write a subroutine name with a string or an identifier.

error Stops the scenario.

e Description

WinID name must be declared in the window match rule part (Window_rule).

The WinWatcher action is executed when a window that meets the window match rule is
displayed.

"Rules" can contain multiple WinID name and WinWatcher action pairs.

e Example of the WinWatcher part

Rules = (
(window_rule_ref = "Warning", throw("Raise warning ")),
(window_rule_ref = "Enter network credentials", subref("Sound a buzzer")),
(window_rule_ref = "Restricted", error)

31

5.8 EventWatcher part
e Syntax

Events = (
EventWatcher name Preamble = (
ttrigger = Event trigger condition,
Event trigger condition parameters,
Call action parameters,
fromt_the_start = true or false // Whether to watch from the start or not

e Event trigger condition

Specify one of the followings for the event trigger condition.
Table 5-8. Event trigger conditions

Option ‘ Description
$SEVENT.UpdateFile Update of a specific file
$SEVENT.UpdateFolder Update of a specific folder
$EVENT.SpecifiedTime Time (specific time)
$EVENT.Monthly Time (monthly)
$SEVENT.Weekly Time (weekly)
$SEVENT.Everyday Time (every day)
$SEVENT.Hour Time (every hour)
$SEVENT.Minute Time (every minute)
$EVENT.WindowState Status of the window
SEVENT.Mail Mail reception

e Event trigger condition parameters

Parameters for each event trigger condition is described below.

Update of a specific file

| path = File path to watch event,

Update of a specific folder

| path = Folder path to watch event,

Time (specific time)

| datetime = time, Il yyyy/MM/dd HH:mm:ss format

32

Time (monthly)

day = day,
hour = hour,

minute = minuute,

type = Identifier of a monthly event type,
/I dd format, effective only when $EVENT.DAY is selected for the type

/I HH format

/I mm format

Specify one of the followings as an identifier of a monthly event type.

Table 5-9. Identifiers of monthly event types

Option ‘ Description
SEVENT.DAY Every month (specified day)
SEVENT.STARTDAY Beginning of every month
SEVENT.LASTDAY End of every month

Time (weekly)

hour = hour,

minute = minuute,

/I HH format

/I mm format

day_of _the_week = Identifier of a day of the week,

Specify one of the followings as an identifier of a day of the week.

Table 5-10. Identifiers of days of the week

minute = minuute,

/I mm format

Option Description

SEVENT.Mon Monday
$SEVENT.Tue Tuesday
SEVENT.Wed Wednesday
$SEVENT.Thu Thursday
SEVENT.Fri Friday
SEVENT.Sat Saturday
$SEVENT.Sun Sunday
Time (every day)

hour = hour, /l HH format

Time (every hour)

minute = minuute,

interval = interval hours,

ih1-99

/I mm format

Time (every minute)

interval = interval minutes, [/ 1-120

Status of the window

window_rule_ref = WinID name,

win_state = expected status,

See “8.3.4 Wait for Window Status” for these parameters.
Mail reception

No parameter.

e Call action parameters

Parameters for each call action type is described below.

Call subroutine

callsub String or identifier Preamble (Sequence of expressions),

See “6.12 Call subroutine statement” for these parameters.

Call scenario

call_scenario Preamble (
file = variable name or filename,
call_vars = (calee’s variable name1 = initial value1, ...),
return_vars = (variable name1 that receives calee’s value = initial value1, ...),
return_value = variable name that receives the return value
),

See “6.13 Call scenario statement” for these parameters

e Description

Specify EventWatcher name as a string or an identifier.
Specify ‘Event trigger condition,” ‘Event trigger condition parameters,” ‘Call action
parameters,’ and ‘Whether to watch from the start.’

An error occurs when the specified EventWatcher names is duplicated.

34

An error occurs when the specified Event trigger condition parameters are not in accordance
with the specified Event trigger condition.

e Example of the EventWatcher part

Events = (
“EventWatcher name” [comment = “Comment”] = (

trigger = SEVENT.UpdateFile,
path = @"C:\temp\WinActor\WathcerData.txt",
‘return val’ = callsub “Subroutine group” [name = “Event list:Event watcher”] (),

from_the_start = false

5.9 Breakpoint information part
e Syntax

Breakpoint_info = (
(id = Constant expression, enable = true or false), ...

e Description

You can write multiple breakpoint information.

For the breakpoint information, specify an ID and whether the breakpoint is enabled or
disabled.

The ID is the ID number specified in the ID attribute of the preamble of a node where the
breakpoint is set.

o Example of the breakpoint information part

Breakpoint_info = (
(id = 88, enable = true)

35

5.10 Scenario information part

e Syntax
Scenario_info = (
creator = Creator string,
contact = Contact string,

expiration = Expiration string,

remarks = Remarks string,

dataupdate_change = true or false,

ignore_datawrite_error = true or false, // If true, an error when writing a data list will be ignored.

variable_limit = true or false, /I If true, the number of characters in variable values will be
limited.
save_ignore_exec = true or false, Il If true, the run/skip node status will be saved.

user_dictionary_enable = true orfalse, // If true, the user translation dictionary will be used when
running a scenatrio.
wss_integer_arithmetic_only = true or false,

Il If true, all four arithmetic operations appeared in
expressions and constant expressions are treated as
integer arithmetic operations.

wait_setting = Timeout option,

wait_timeout = Timeout period, /I milliseconds
percent_variable = true or false,

use_webdriver = true or false,

collect_healing_info = true or false,

alter_property_path = true or false

e Description

This is the part corresponding to the scenario information window of WinActor.

For the attributes that can be specified in the above syntax, the value of scenario information
can be changed in WSS.

“wss_integer_arithmetic_only” can be used only in WSS. It does not exist in the scenario
information of WinActor.

For “wait_setting”, give an option to indicate a source of the timeout period. The option is one
of the followings.

Table 5-11. Options for the source of the timeout period
Option ‘ Description
$SCENARIO_INFO.WaitSettingOption Timeout period in “Option” window
$SCENARIO_INFO.WaitSettingScenario Timeour period in “Scenario information” window

36

“wait_setting” is optional. ‘$SCENARIO_INFO.WaitSettingOption’ is the default.

For “wait_timeout”, give a timeout period in milliseconds or the variable that store a timeout
period. The timeout period should be in the range of 100 to 3,600,000.

“wait_timeout” is optional. The default value is 10,000.

When ‘$SCENARIO_INFO.WaitSettingOption’ is specified for “wait_setting,” the value
specified for “wait_timeout” is not used.

For “percent_variable,” specify true or false. If omitted, it is assumed to be false.

For “use_webdriver,” specify true or false. If omitted, it is assumed to be true on the script
created with WinActor before Ver.7.4, and to be false on the script created with WinActor
Ver.7.4 or later.

For “collect_healing_info,” specify true or false. If omitted, it is assumed to be false,

For “alter_property_path,” specify true or false. If omitted, it is assumed to be false. This setting
is effective only when “collect_healing_info = true” is specified.

e Example of the scenario information part

Scenario_info = (
creator = "User A",
contact = "User A",
expiration = "2030/09/30 00:00:00",
remarks =",
dataupdate_change = true,
ignore_datawrite_error = false,
variable_limit = true,
save_ignore_exec = false,
user_dictionary_enable = false,
percent_variable = false,
use_webdriver = false,
collect_healing_info = false

37

5.11 Image part
e Syntax

Images = (
Image declaration ,...

)

e Description

The image part lists reference images held by WinActor.
Reference images are acquired by WinActor. They will not be recognized by WinActor when
they are written only in WSS.

An error will occur if the image IDs of the image declaration are duplicated.

5.11.1 Image declaration

e Syntax

| Image ID = (Attribute = Attribute value , ...)

e Attributes

Table 5-12. Image declaration attributes

Attribute ‘ Description
name Image name string
size Image size (percentage) when the image was captured. Numeric
value from 0 to 100.
width Numeric value of the image width
height Numeric value of the image height

5.11.2 Example of image declarations

Images = (
img_20190613104343897 = (name = "Untitled-Notepad", size = 50, width = 409, height = 194),
img_20191210154248256 = (name = "start-GoogleSearch-InternetExplorer", size = 50, width = 562,
height = 531)
)

38

5.12 Flowchart information part

e Syntax

Flow_divide_info = (
Tab name string = (seq = Constant expression, tab_id = String) , ...

e Description

An error will occur if the tab name strings are duplicated.
"tab_id" should not be duplicated.

"tab_id" = "0" is mandatory.

"tab_id" is referenced from "tab_id_ref" of the preamble of the floating part or the subroutine
part. An error will occur if the reference destination of "tab_id_ref" cannot be found.

e Example of the flowchart information part

Flow_divide_info = (
"Main" = (seq = 1, tab_id = "0"),
"NewTab_1" = (seq = 2, tab_id = "1")

5.13 Word dictionary part
e Syntax

Translation = (
(Country identification string, Country identification string, ...),
(Word string, Word string, ...),

e Description

This part sets up a word dictionary for each language.
The word dictionary can be set only in WinActor itself. The word dictionary part written in
WSS will not be reflected in WinActor itself.

First, write a const tuple of language type strings as a title.
Subsequently, write multiple const tuples with corresponding words.
The number of elements in all tuples must be the same.

39

e Example of the word dictionary part

Translation = (
("ja_JP", "en_US"),
("TEX R, "text"),
("AH A", "io"),

)

40

6. Statement
6.1 Description

Letters .,; () {} are syntax elements. The italic parts are explained separately.
The statement preamble is optional.

Multiple statements can be written in "Sequence of statements." The number of statements
can be 0.

"Expression;" does not become a statement.

There is no empty statement, and only ";" is not allowed as a statement.

6.2 Group statement
e Syntax

Group Preamble

{

Sequence of statements

This is used to organize statement sequences.

When you write a sequence of statements in the floating part, the compiler puts them together
in a group statement.

To make associated sticky notes invisible, write “TagVisible = false” in the preamble.

The preamble is optional.

6.3 if statement
e Syntax

if (Conditional expression) Preamble
then Preamble

{

Sequence of statements

}

else Preamble

{

Sequence of statements

"else preamble {}" of the "else" part is optional.

41

Only the name attribute is valid for the preamble of the "then" part and the "else" part.

To make associated sticky notes invisible, write “TagVisible = false” in the first preamble.

6.4 while statement
e Syntax

while Preamble
Loop condition
(Counter Identifier)
{
Sequence of statements

}

"(Counter identifier)" that specifies a counter variable is optional.

No special identifier can be specified for the counter. Variables declared as constants cannot
be specified either.

The anonymous identifier " can be specified for the counter.
"while" and "Counter" are case insensitive.

If the attribute "isclosed_body" is set to true in the preamble, the while node will be displayed
with the body part closed.

To make associated sticky notes invisible, write “TagVisible = false” in the preamble.

The preamble is optional.

6.4.1 Loop condition
e Syntax

One of the following eight formats:
For details, see the "Pre-Test Loop" node in "WinActor Operation Manual."

Table 6-1. Loop condition formats
Format ‘ Description

(conditional expression) Repeats the loop until the conditional
expression becomes false. Details of the
conditional expression are described later.

(true) Always represents a true conditional
expression. Keeps to repeat the loop.

(false) Always represents a false conditional
expression. Never being in a loop.

42

Format Description
(Start = expression, End = expression) Repeats the loop within the specified range of
numbers.
(File = string or variable name) Specifies an Excel or a CSV file and repeats the
loop for the number of data.
(DBSource = string or variable name , Repeats the loop for the number of data
User = string or variable name , records in the database.
Password = string or variable name ,
Table = string or variable name)
(Template_And_Data = variable name, Repeats the loop for the number of data using
lterate = true or false, template and data.
IterateOver = expression, ‘IterateOver’ is effective only when “lterate =
IsUpdate = true or false, true,” and ‘UpdateTo’ is effective only when
UpdateTo = variable name) “IsUpdate = true.”
(Json_Object = variable name or JSON array | Repeats the loop obtaining keys and values
string from JSON object or JSON array.
Key = expression,
KeyOut = variable name,
ValueOut = variable name)

Following are common loop condition syntax for the while statement and dowhile statement.

Enclose the loop condition in parentheses.

true, false, Start, End, File, DBSource, User, Password, Table, Template_ And_Data, lterate,
IterateOver, IsUpdate, UpdateTo, Json_Object, Key, KeyOut, and ValueOut are case
insensitive.

6.5 dowhile statement

e Syntax

dowhile Preamble
Loop condition
(Counter Identifier)

{

Sequence of statements

"(Counter identifier)" that specifies a counter variable is optional.

No special identifier can be specified for the counter. Variables declared as constants cannot
be specified either.

The anonymous identifier " can be specified for the counter.

"dowhile" and "Counter" are case insensitive.

If the attribute "isclosed_body" is set to true in the preamble, the dowhile node will be
displayed with the body part closed.

To make associated sticky notes invisible, write “TagVisible = false” in the preamble.

The preamble is optional.

6.5.1 Loop condition

Same as "6.4.1 Loop condition."

6.6 switch statement
e Syntax

switch Preamble
Sequence of case statements
Default statement

The default statement is optional.

When an expression including calculation is given to a case statement, the compiler replaces
"switch" with an "if-then-else" statement, and the representation on the flowchart changes.

To make associated sticky notes invisible, write “TagVisible = false” in the preamble.

The preamble is optional.

6.6.1 Case statement

e Syntax

Case (Conditional expression) Preamble

{

Sequence of statements

Conditional expression is required.
"Case" is case insensitive.
The preamble is optional.

Only the name attribute is valid for the preamble.

44

6.6.2 Default statement
e Syntax

Default
{

Sequence of statements

No preamble can be added to the default statement.

"Default" is case insensitive.

6.7 try statement
e Syntax

try Preamble

{

Sequence of statements

}

Sequence of catch statements

At least one catch statement is required.
To make associated sticky notes invisible, write “TagVisible = false” in the preamble.

The preamble is optional.

6.7.1 catch statement

e Syntax

catch Exception handling name string Preamble

{

Sequence of statements

The preamble is optional. There are no valid attributes.

6.8 return statement
e Syntax

| return (Expression) Preamble ;

45

The return statement can be used only within a subroutine block defined in the subroutine
part.

"Expression" is optional, but "(" and ")" cannot be omitted.
To make associated sticky notes invisible, write “TagVisible = false” in the preamble.

The preamble is optional.

6.9 scenario return statement

e Syntax

| scenario_return (Expression) Preamble ;

"Expression" and “Preamble” are optional.

The value of the “Expression” is the return value to the statement “call_scenario” in the
caller’s scenario.

To make associated sticky notes invisible, write “TagVisible = false” in the preamble.

If this statement is not placed in the main part, a warning occurs.

6.10 break statement

e Syntax

| break Preamble ;

The break statement can be used only within a "while" or "dowhile" block.
To make associated sticky notes invisible, write “TagVisible = false” in the preamble.

The preamble is optional.

6.11 continue statement

e Syntax

| continue Preamble ;

The continue statement can be used only within a "while" or "dowhile" block.
To make associated sticky notes invisible, write “TagVisible = false” in the preamble.

The preamble is optional.

46

6.12 Call subroutine statement

e Syntax

| callsub String or identifier Preamble (Sequence of expressions) ;

Define a subroutine corresponding to "String or identifier".

"callsub" is optional.

"Sequence of expression” is optional, but "(" and ")" cannot be omitted.

To make associated sticky notes invisible, write “TagVisible = false” in the preamble.

The preamble is optional.

6.13 Call scenario statement
e Syntax

Call_scenario Preamble (
file = variable name of filename
call_vars = (callee’s variable name1 = initial value1, ...),
return_vars = (variable name1 that receives callee’s value = initial value1, ...),
return_value = variable name that receives the return value

)

The value of “call_vars” is pairs of a callee’s variable name and its initial value if the pairs
exist. The “call_vars” is optional.

If a callee’s variable name of a pair does not exist, the pair is ignored.
Not to specify an initial value, write an anonymous identifier ” (two single quotes) as a value.

“ 6

To specify a value without a variable name, write
such a script is loaded.

= value” however a warning occurs when

The value of “return_vars” is names of variables to be returned when the callee’s scenario
ends. The “return_vars” is optional.

The return value of the callee will be stored in the variable specified for the “return_value.”
The value is returned in the scenario_return statement in the callee’s scenario.

The return value is not stored in the specified variable when this statement appears in an
assignment statement or in an expression. When the assign statement or expression

47

appears in the WSS output of a flowchart, the variable to set in the property for the return
value is omitted.

The “return_value” is optional.

To make associated sticky notes invisible, write “TagVisible = false” in the preamble.

The preamble is optional.

Example

call_scenario [name = "Call Scenario File", comment ="
(
file = @"C:\Users\user\Documents\sub.ums7",
call_vars = (name = "user"),
//Set "user" to the “name” in the scenario “sub.ums7” and launch it
return_vars = (ret) //IReceive the value of the "ret” in the scenario “sub.ums7

result = call_scenario [name = "Call Scenario File", comment = "]
/I Assign the result set with scenario_return

file = @"C:\Users\user\Documents\sub2.ums7",
call_vars = (), /I Omit variables and values
return_vars = () /I Omit variables

6.14 Adapter action statement
e Syntax

| Adapter action ;

Calls an adapter action.

In the case of an action that returns a value, the value will be discarded unless the return
destination of the value is set in the action parameter.

When calling an action that returns a value, it is recommended to place an adapter action on
the right side of an assignment statement. When the assign statement appears in the WSS
output of a flowchart, the property settings for storing the return value is omitted.

See the chapter on adapter actions.

48

6.15 Assignment statement

e Syntax

| Identifier = Expression Preamble ;

Assigns a value of an expression to a variable.

The identifier on the left side of "=" is one of the following.

Table 6-2. Identifiers in the assignment statement

Identifier

Identifier declared as a variable in the variable part

Read-write special identifier

If you specify an ID (such as for a breakpoint) to both the preamble of an assignment
statement and the preamble of the element in the expression (such as an adapter action),
the both IDs will be effective, and there will be no optimization of reducing assignment
operations.

Specifying an ID only for the preamble of the element in the expression may reduce the
number of nodes to be generated.

To make associated sticky notes invisible, write “TagVisible = false” in the preamble.

The preamble is optional.

6.16 Four arithmetic operations

The four arithmetic operations can be written freely.

The representation on the flowchart may change because the compiler adds the necessary
nodes when converting WSS into nodes.

49

/. EXxpression

An expression is a combination of one or more factors with the four arithmetic operators of
+,-, % N A A and /A

LA |

You can place unary operators of +, -, +*, and - in front of the factor.

The priority of operators is as follows.

Table 7-1. Priority of operators
[\[o} Operator
L) Unary operator + - +A -A
(2, s A A
9 + - 4N A

When a factor at the time of execution is a simple string literal, the operation by the unary
operator and the four arithmetic operators cannot be performed.

However, if the factor is a string literal that can be interpreted as a number, these operations
can be performed.

There is no operation to obtain a Boolean value.

Operators of +7, -A, *A and /* are used in integer arithmetic. They correspond to the nodes
of four arithmetic operations with the “Calculate as an integer and truncate the result
numbers beyond the decimal point.” checked.

They can be used with +, -, *, and / by mixture.

If any operand of the operator is not an integer, a runtime error occurs. A comma separated
number is not an integer thus a runtime error occurs if it is an operand of the operator..

When unary operators +#, -* are placed before a factor, they are treated as “(0 +* factor)”,
“(0 -* factor)” respectively and checked for whether they are integers or not.

When even number of unary operators of integer arithmetic are placed like “-* -* factor’, they
are treated as “(0 +" factor)’.

Even if a factor is a comma separated number with full-width commas or noted with full-width
digits, the result of an operation is a number noted with half-width digits.

7.1 Factor
e Syntax

A factor is one of the following:

50

Table 7-2. Factor syntax

Factor Remarks

Integer

Float

String Unary operation and four arithmetic operations
cannot be applied.

Identifier

TRUE Interpreted as the string "TRUE."

Unary operation and four arithmetic operations
cannot be applied.

FALSE Interpreted as the string "FALSE."
Unary operation and four arithmetic operations
cannot be applied.

Adapter action with return value The property settings for the returned arguments’ list
are ignored.

In the WSS output, the property settings for storing
the return value are omitted.

Call subroutine with return value

Call scenario with return value

(expression)

The identifier is a variable, constant, predefined constant, special variable, or anonymous
identifier.

Anonymous identifiers and identifiers whose values are string literals cannot perform the
unary operation and four arithmetic operations.

7.2 Constant expression

A constant expression is an expression that is calculated to a constant when compiling. The
result may be a Boolean value.

It consists of one or more constant factors combined with a binary operator for constant
expressions.

String literals that can be interpreted as numbers can be included in constant expressions.
However, if the operands on both sides of a comparison operator are string literals, they are
not interpreted as numbers.

The operands of && (and) and || (or) must be Boolean values on both sides. Both sides will
be evaluated.

The operands of ~ (regular expression match) and !~ (regular expression unmatch) must be
string literals on both sides.

The operands of * / + - must be numeric values or string literals that can be interpreted
as numbers on both sides.

The operands of ** /A +A -Amust be integer values on both sides. If either of them has
a value beyond the decimal point, an error occurs. A comma separated number is not an
integer value thus an error occurs if it is included in the operands.

The operands of == = >= > < <= must be numeric values on both sides or string
literals on both sides.

An operations on a number and a string literal is not possible.

When both sides are string literals, none of them is interpreted as a number even when both
of them can be interpreted as numbers. For example, the operands in “2000” < “300” are
regarded as strings on both sides, and the expression is evaluated to be true. The operands
in “2000” < 300 are interpreted as numbers on both sides, and the expression is evaluated
to be false.

If both sides are string literals, == and != will be case sensitive and compared with exact
match.

>= > < <= gre case insensitive and compared lexicographically.

7.2.1 Binary operators for constant expressions

The order of priority (highest to lowest) is as follows.

Table 7-3. Binary operators for constant expressions

N[o} Binary operator Remarks
@ LN N &&
@ + - A You can place unary operators of + - ;» A in

front of the factor.

>= > < <= ~ |~

71.2.2 Constant factors
e Syntax

A constant factor is one of the following:

Table 7-4. Constant factor syntax

Constant factor REINENS

Integer
Float

[
Constant factor RENENS

String Unary operation cannot be applied.
Identifier
TRUE Interpreted as the string "TRUE."

+ - unary operation cannot be applied.
FALSE Interpreted as the string "FALSE."

+ - unary operation cannot be applied.

strcmp(constant expression, constant| The constant expression must be a string literal.
expression) Case-sensitive comparison, and the result is
"true" or "false".

strcasecmp(constant expression, constant| The constant expression must be a string literal.
expression) Case-insensitive comparison, and the result is
"true" or "false".

! constant factor The constant factor must be a Boolean value.

(constant expression)

The identifier is a constant, predefined constant, read-only special variable, or anonymous
identifier.

Anonymous identifiers cannot be operated.

For undefined identifiers, a warning will be output and the value will be treated as the integer
zero, and the process will continue.

7.3 Conditional expression

A conditional expression consists of one or more conditional expression factors combined
with && or ||.

Priority is given to &&, but it is recommended to enclose it in parentheses as much as
possible.

The result of a conditional expression is "true" or "false."

7.3.1 Binary operators for conditional expressions

A binary operator for conditional expressions is one of the following:

Table 7-5. Binary operators for conditional expressions

Binary operator

== |= >= > < <= ~ |~

e Syntax

istrue(expression)

7.3.2 Conditional expression factors

The result of a conditional expression factor is "true" or "false."

A conditional expression factor is one of the following:

Table 7-6. Conditional expression factor syntax

Conditional expression factor Remarks

The result is "true" or "false."

isfalse(expression)

The result is "true" or "false."

strcmp(expression, expression)

The expression must be a string literal.
Case-sensitive comparison.

strcasecmp(expression, expression)

The expression must be a string literal.
Case-insensitive comparison.

Expression Binary operator for conditional
expression Expression

TRUE

FALSE

! conditional expression factor

(conditional expression)

8. Adapter actions

Adapter actions correspond to nodes in the action category.
An adapter action that returns a value can be included in an expression.

See "4.6 Structure" for general notation for adapter parameter lists.

e Syntax

| WinActor.Action name Preamble Adapter parameter list

"Action name" is case insensitive.

For an action that returns a value, specify a name of a variable to which the value is to be
returned in a specific attribute name (such as value).

If an action that returns a value is used in an expression (including an assignment statement),
the return destination specified by the attribute name will be ignored. In this case, the attribute
name of the return destination can be omitted. Thus, when the assign statement or
expression appears in the WSS output of a flowchart, the attribute name for the return value
is omitted.

To make associated sticky notes invisible, write “TagVisible = false” in the preamble.

The preamble is optional except for some parts.

The following shows the adapter parameter list for each action.

8.1 Automatic recording

8.1.1 Event recording — Click

This is an operation of clicking a button, check box, or radio button.

WinActor.ClickWin32 Preamble
(

window_rule_ref = Window_rule WinID name,

control = (instance<check> = expression, text<check> = expression, position<check> =
position),

wait_setting = Timeout option,

wait_timeout = Timeout period, /I milliseconds

capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

No value is returned.

Ill "
’

"window_rule_ref," "control," "capture" are required.

55

For "Window_rule WinID name," write "WinID name" of the window match rule part. (The
same applies to the actions described below.)

"<check>" attached to the attribute of "control" is for specifying check box status in the Details
tab displayed in the property of a node recorded in the Event mode.

<true> for checked and <false> for unchecked.

For "instance" of "control," specify a serial number assigned to the control with a number or
a variable that stores a number. (The same applies to the actions described below.)

For "text" of "control," specify a string displayed in the control with a string or a variable that
stores a string. (The same applies to the actions described below.)

The "position" of "control" is a variable or a string or (x = constant expression, y = constant
expression). (The same applies to the actions described below.)

When you do not specify the position, write it as a string "™ or the constant expression as "',

suchas (x="",y="").

When you specify it with a variable or a string, write x and y coordinates combined with a
comma. (Example: "100,200")

Table 8-1. Sources of the timeout period
Item type ‘ Description

$WIN32.WaitSettingOption The timeout is set in the “Option” dialog.
$WIN32.WaitSettingScenario The timeout is set in the “Scenario information” window.

$SWIN32.WaitSettingNode The timeout is set for “wait_timeout” in the “Property” pane.

“wait_setting” is optional. ‘$WIN32.WaitSettingScenario’ is the default.

For “wait_timeout”, give a timeout period in milliseconds or the variable that store a timeout
period. The timeout period should be in the range of 100 to 3,600,000. If the specified period
is out of the range, a warning message is displayed, and the nearer of the two values 100
and 3,600,000 is used instead.

If an anonymous identifier (two single quotes) is specified as a variable name, 10,000 is
used as the timeout period.

“wait_timeout” is optional. The default value is 10,000.

When ‘$WIN32.WaitSettingOption’ or ‘$WIN32.WaitSettingScenario’ is specified for the
“wait_setting,” the value specified for “wait_timeout” is not used. The “wait_timeout” property
of a node is output to the .wss file from WinActor only when ‘Use this "Property” is selected
for “Timeout setting” in the “Property” pane of the node.

For "imageid" of "capture," specify an image ID in the image declaration of the image part.

"mouse coordinate X" and "mouse coordinate Y" of "capture" are numerical constants. When
you do not specify the coordinates, write them as "".

56

8.1.2 Event recording — Set Text

This is an operation to set a string in a text box.

WinActor.SetTextWin32 Preamble
(

window_rule_ref = Window_rule WinID name,

control = (instance<check> = expression, text<check> = expression, position<check> =
position),

value = Expression, [/ Text string to set

wait_setting = Timeout option,

wait_timeout = Timeout period, [/ milliseconds

capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

No value is returned.
If the expression of "value" results in a number, it is regarded as a string.

When you do not set an expression, specify the anonymous identifier " (two single quotes)
in "value."

If you specify " (two double quotes), it means that you specify an empty string.

For “wait_setting” and “wait_timeout,” see description in “8.1.1 Event recording — Click.”

8.1.3 Eventrecording — Select ltem in List

This is an operation to select an item in a list box or combo box.

WinActor.SelectListWin32 Preamble
(
window_rule_ref = Window_rule WinID name,
control = (instance<check> = expression, text<check> = expression, position<check> =
position),
value = Expression or variable name,
kind = Item type,
wait_setting = Timeout option,
wait_timeout = Timeout period, /I milliseconds
capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)
)

No value is returned.
For "kind," specify the item type $SelectListWin32.index or $SelectListWin32.text.

57

Table 8-2. Item types in the Select Iltem in List action

Item type ‘ Description
$SelectListWin32.index Selects an item in a list by specifying a zero-based index
$SelectListWin32.text Selects an item in a list by a string displayed in the list

For "value," specify an expression that results in a value for selecting a list box or a variable
name that stores a value.

For “wait_setting” and “wait_timeout,” see description in “8.1.1 Event recording — Click.”

8.1.4 Event recording — Select Tab

This is an operation to switch tabs.

WinActor.SelectTabWin32 Preamble
(

window_rule_ref = Window_rule WinID name,

control = (instance<check> = expression, text<check> = expression, position<check> =
position),

value = Expression or variable name,

kind = Item type,

wait_setting = Timeout option,

wait_timeout = Timeout period, // milliseconds

capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

No value is returned.
For "kind," specify the item type $SelectTabWin32.index or $SelectTabWin32.text.

Table 8-3. Item types in the Select Tab action

Item type ‘ Description
$SelectTabWin32.index Selects a tab by specifying a zero-based index
$SelectTabWin32.text Selects a tab by a string displayed on the tab

For "value," specify an expression that results in a value for selecting a tab or a variable
name that stores a value.

For “wait_setting” and “wait_timeout,” see description in “8.1.1 Event recording — Click.”

operations.

8.1.5 Event recording — Emulate

This is automatic operations to emulate a sequence of mouse click positions and keyboard

(

WinActor.EmulationWin32 Preamble

window_rule_ref = Window_rule WinID name,

action = Sequence of actions,

wait_setting = Timeout option,

wait_timeout = Timeout period, // milliseconds

capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

No value is returned.

Sequence of actions ‘

Action

For "action," write multiple mouse operations, keyboard operations, and waits. The actions
will be executed in the order.

The sequence of actions is written as follows:

Table 8-4. Sequence of actions for emulation
Description

When writing only one action

(Action, ...)

When writing multiple actions, separate them with commas and enclose
them in parentheses.

The following three types of actions are available. These can be mixed.

Table 8-5. Emulation actions

Mouse action

Key action

Wait

Mouse action

| @(Mouse, button, movement, X-coordinate, Y-coordinate, origin, X_D/P, Y_D/P, Scale)

Table 8-6. Mouse actions for emulation

Mouse action Description

Button One of the following:

L Left button

R Right button

M Middle button
Movement One of the following:

DOWN Button down

upP Button up

MOVE Move

DBL Button double-click
Origin One of the following: (case insensitive)

LEFTTOP Upper left origin

RIGHTTOP Upper right origin

LEFTBOTTOM Lower left origin

RIGHTBOTTOM Lower right origin
X_D/P Select a method to specify X and Y coordinates.
Y_D/P One of the following: (case insensitive)

D Direct (in pixels)

P % (percentage to the width or height

of the window)
Scale Scale factor of captured image 1.0 for equal magnification
optional

Key action

| @(Key, key code, UPIDOWN)

Wait

| @(Wait, wait time)

The unit of wait time is milliseconds

For “wait_setting” and “wait_timeout,” see description in “8.1.1 Event recording — Click.”

Example

Var_group (

)

/I Mouse operation and wait

const DefaultWaitTime = 2*1000 [comment = "2sec"]

action = (@(Mouse, L, DOWN, 796, 56, LEFTTOP, D, D),
@(Mouse, L, UP, 796, 56, LEFTTOP, D, D),
@(Mouse, NON, MOVE, 799, 100, LEFTTOP, D, D),
@(Wait, 1000)),

/I Keyboard operation and wait
action = (@(Key, 18, DOWN),
@(Key, 115, DOWN),
@(Key, 115, UP),
@(Key, 18, UP),
@(Wait, (DefaultWaitTime + 2 * 500))), /I Enclose constant expressions in parentheses

/I Write only one action
action = @(Wait, 300),

8.1.6 Event recording — Get String

WinActor.GetTextWin32 Preamble
(

window_rule_ref = Window_rule WinID name,

control = (instance<check> = expression, text<check> = expression, position<check> =
position),

value = Variable name to receive the result,

wait_setting = Timeout option,

wait_timeout = Timeout period, // milliseconds

capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

The result is returned to the variable specified in "value." Specify a writable variable.

If WinActor.GetTextWin32 appears in an assignment or expression, the result will not be
stored in the variable. Specifying the variable to receive the result is optional. When the
assign statement or expression appears in the WSS output of a flowchart, the variable to set
in the property for the return value is omitted.

For “wait_setting” and “wait_timeout,” see description in “8.1.1 Event recording — Click.”

Example

Var_group (
var01 = 0 [comment = "work variable"],
ret0O1 = 0 [comment = "for return"]
)
/I Assign the result to a variable.
ret01 = WinActor.GetTextWin32 [name = "Get String (WIN32)", comment = "get text"]
(
window_rule_ref = "Untitled-Notepad",
control = (instance<true> = var01, text<true> = var01, position<true> = var01),

61

capture = (imageid = "img_20191115153616376", x = 1197, y = 159)
)
I/l Specify a variable name to return the result (value attribute)
WinActor.GetTextWin32 [name = "Get String (WIN32)", comment = "get text"]

(

window_rule_ref = "Untitled-Notepad",

control = (instance<true> = var01, text<true> = var01, position<true> = var01),
value = ret01,
capture = (imageid = "img_20191115153616376", x = 1197, y = 159)

8.1.7 Event recording — Get Item in List

WinActor.GetListWin32 Preamble
(

window_rule_ref = Window_rule WinID name,

control = (instance<check> = expression, text<check> = expression, position<check> =
position),

value = Variable name to receive the result,

kind = Item type,

wait_setting = Timeout option,

wait_timeout = Timeout period, // milliseconds

capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

The result is returned to the variable specified in "value."

If WinActor.GetListWin32 appears in an assignment or expression, the result will not be
stored in the variable. Specifying the variable to receive the result is optional. When the
assign statement or expression appears in the WSS output of a flowchart, the variable to set
in the property for the return value is omitted.

For "kind," specify the item type $GetListWin32.index or $GetListWin32.text.

Table 8-7. Item types in Get Item in List

Item type ‘ Description
$GetListWin32.index Gets an index of the selected element in the list
$GetListWin32.text Gets a name of the selected element in the list

For “wait_setting” and “wait_timeout,” see description in “8.1.1 Event recording — Click.”

62

8.1.8 Event recording — Get Check State

WinActor.GetCheckWin32 Preamble
(

window_rule_ref = Window_rule WinID name,

control = (instance<check> = expression, text<check> = expression, position<check> =
position),

value = Variable name to receive the result,

wait_setting = Timeout option,

wait_timeout = Timeout period, // milliseconds

capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

True or false is returned to the variable specified in "value."

If WinActor.GetCheckWin32 appears in an assignment or expression, the result will not be
stored in the variable. Specifying the variable to receive the result is optional. When the
assign statement or expression appears in the WSS output of a flowchart, the variable to set
in the property for the return value is omitted.

For “wait_setting” and “wait_timeout,” see description in “8.1.1 Event recording — Click.”

8.1.9 Event recording — Get Enable/Disable State

WinActor.GetEnableWin32 Preamble
(

window_rule_ref = Window_rule WinID name,

control = (instance<check> = expression, text<check> = expression, position<check> =
position),

value = Variable name to receive the result,

wait_setting = Timeout option,

wait_timeout = Timeout period, // milliseconds

capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

True or false is returned to the variable specified in "value."

If WinActor.GetEnableWin32 appears in an assignment or expression, the result will not be
stored in the variable. Specifying the variable to receive the result is optional. When the
assign statement or expression appears in the WSS output of a flowchart, the variable to set
in the property for the return value is omitted.

For “wait_setting” and “wait_timeout,” see description in “8.1.1 Event recording — Click.”

63

8.1.10 Event recording — Get All Items in List

WinActor.GetAllListWin32 Preamble
(

window_rule_ref = Window_rule WinID name,

control = (instance<check> = expression, text<check> = expression, position<check> =
position),

file = Variable name or filename,

wait_setting = Timeout option,

wait_timeout = Timeout period, // milliseconds

capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

No value is returned.

For "file," specify a filename string to output the result or a variable name that stores a
filename.

For “wait_setting” and “wait_timeout,” see description in “8.1.1 Event recording — Click.”

8.1.11 UlAutomation

WinActor.UlAutomation Preamble

(

window_rule_ref = Window_rule WinID name,

path = Control path JSON-format string,

expand_variable = true /false, // whether to expand embedded variables or not
pattern = Control pattern,

action = Action,

use_wildcard = true / false, // whether to enable ambiguous specification with “*’
wait_setting = Timeout setting,

wait_timeout = Timeout, /I milliseconds

wait_timeout_period = Wait condition,
cache_update =true/false, // Forced update flag of the cache, Default: false
wait_retry_max = Maximum number of retries,
path_version = $UIA.Version2, I or $UIA.Version1
box_center_position_x = Variable to store X coordinate of the element center,

/I Extended Mouse Operation: “Get the coordinates of the element center” only
box_center_position_y = Variable to store Y coordinate of the element center,

/I Extended Mouse Operation: “Get the coordinates of the element center” only
box_left _position_x = Variable to store X coordinate of the top-left of the element,

/I Extended Mouse Operation: “Get top-left/bottom-right coordinates of the element” only
box_top_position_y = Variable to store Y coordinate of the top-left of the element,

/I Extended Mouse Operation: “Get top-left/bottom-right coordinates of the element” only
box_right_position_x = Variable to store X coordinate of the bottom-right of the element,

/I Extended Mouse Operation: “Get top-left/bottom-right coordinates of the element” only

64

box_bottom_position_y = Variable to store Y coordinate of the bottom-right of the element,
/I Extended Mouse Operation: “Get top-left/bottom-right coordinates of the element” only
activate_target = true / false,
/I whether to activate the target window during execution, Default: true

control = Control spec,
result = Variable name to receive the result,
capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

For “path,” specify a target control by a control path expressed in JSON-format string.

As the JSON-format string usually includes many double quotes, it is recommended to write
it as a verbatim string literal.

The “path” is required.

To expand variables in the “path” string, include %variable_name% in the string and set frue
to the “expand_variable.” If the “expand_variable” is not specified, it is regarded as false.

For “pattern,” specify a control pattern which specifies an operation for the target control.

The “pattern” can be omitted. The control pattern corresponding to the action specified for
the “action” is used if “pattern” is omitted.

For the valid pairs of a control pattern and an action, see the “Table 8-11 Adapter parameter
list of UlAutomation.”

The common prefix “SUIA” is omitted for the identifiers in the table.

For “action,” specify an action, which is defined for each control patterns,

For the valid pairs of a control pattern and an action, see the “Table 8-11 Adapter parameter
list of UlAutomationtable.”

The common prefix “SUIA” is omitted for the identifiers in the table.

For “use_wildcard,” set whether to enable or disable the ambiguous specification with *’ in
the target control specification of UlAutomation.

Set true to enable the ambiguous specification.
Set false to disable the ambiguous specification.

“use_wildcard” is optional. If omitted, it is assumed to be false, which disables the ambiguous
specification.

65

For “wait_setting,” specify the place to set the timeout, which is the time to wait for the target
control and its window to be present after the UlAutomation node is being executed. Select
one of the followings as the place.

Table 8-8. Sources of the timeout period

Item type ‘ Description
SUIA.WaitSettingOption The timeout is set in the “Option” window.
SUIA.WaitSettingScenario The timeout is set in the “Scenario information” window.
SUIA.WaitSettingNode The timeout is set for “wait_timeout” in the “Property” pane.

The “wait_setting” is optional. $UIA.WaitSettingNode is the default value.

For “wait_timeout,” specify a timeout period in milliseconds or the variable that store a timeout
period. The timeout period should be in the range of 100 to 3,600,000. If the specified value
is out of the range, a warning message is displayed, and the nearer of the two values 100
and 3,600,000 is used instead.

If an anonymous identifier (two single quotes) is specified as a variable name, 30,000 is
used as the timeout period.

The “wait_timeout” is optional. The default value is 30,000.

When ‘$UIA.WaitSettingOption’ or ‘SUIA.WaitSettingScenario’ is specified for “wait_setting,”
the setting in “wait_timeout” is not used.

For “wait_timeout_period,” select one of the following waiting conditions.

Table 8-9. Waiting conditions

Waiting condition ‘ Description
SUIA.WaitForWindow Waiting for the window to be found
SUIA.WaitForControl Waiting for the target control to be found

The “wait_timeout_period” is optional. The default value is $UIA.WaitForControl.

For “cache_update,” specify whether to update the cache used in the execution of
UlAutomation node forcibly.

When true is specified, UlAutomation node updates the cache forcibly and run slowly.
When false is specified, UIAutomatin node avoids the update of the cache as long as possible.

“cache_update” is optional. The default value is false, which means the fast mode.

For “wait_retry_max,” specify the maximum number of retries, which are performed when
“unauthorized operation” error occurs, in decimal number.

If 0 is specified, no retry is done.
When a negative value is specified, no limit is set on the number of retries.

The “wait_retry_max” is optional. The default value is 5.

For “path_version,” select one of the following control path format versions. If omitted, it is
assumed to be $UIA.Version1.

Table 8-10. Control path format versions

Format version ‘ Description
$UIA.Version1 Version 1, which is compatible with the format of WinActor7.4.4
or earlier
$UIA Version2 Version 2

The “box_center_position_x" and “box_center_position_y” can be specified only when both
“pattern = $UIA.MouseExtensionPattern” and “action = $UIA.GetBoxCenterPosition” are set,
otherwise an error occurs. Specify the name of a variable for each of them to store the X and
the Y coordinates of the center of the element. These specifications are optional, and an
anonymous identifier is used as default.

The "box_left_position_x,” “box_top_position_y,” “box_right_position_x,” and
“box_bottom_position_y* can be specified only when both “pattern =
$UIA.MouseExtensionPattern” and “action = $UIA. UIA.GetBoxPositions” are set, otherwise
an error occurs. Specify the name of a variable for each of them to store the X and the Y
coordinates of the top-left and the bottom-right of the element. These specifications are
optional, and an anonymous identifier is used as default.

For the “activate_target,” specify whether to activate the target window during execution.
When true is specified, the target control is operated after the target window is activated.
When false is specified, the target control is operated without activating the target window.

The “activate_target” is optional. The default value is true.

For the “control,” specify parameters necessary to the action as an adapter parameter list.
The “control” can be omitted.

A parameter in the adapter parameter list should be one of three parameters “scroll”,
“selection”, and “value”.

67

Specify each parameter as shown below. For the valid parameters for each action, see
“Table 8-11 Adapter parameter list of UlAutomation”.

Invalid parameters will be ignored with showing warning messages at the time of loading.

control = (scroll = (hscroll_amount = Scroll direction and amount identifier,
vscroll_amount = Scroll direction and amount identifier),
selection = (item_index = Expression, item_value = Expression),
value = (item_value = Expression, mode = Mode identifier)

)

The result of this actions is returned to the variable specified for the “result”.

The return value will not be stored in the specified variable when this action occurs in an
assignment statement or in an expression.

The variable name for the “result” can be omitted. When the assign statement or expression
appears in the WSS output of a flowchart, the variable to set in the property for the return
value is omitted.

Example

WinActor.UlAutomation [name = "Select/GetByText/Value", comment = "]

(
window_rule_ref = "Window",
path = @llllll
[{"id":ll15ll,llindexll:lloll}]

pattern = $UIA.SelectionPattern,
action = $UIA.SelectltemByText,
control = (selection = (item_value = 3))

ret = WinActor.UlAutomation [name = "Common/GetLabel", comment = "]

(
window_rule_ref = "title_*Untitled-Notepad",
path = @"llll
[{llidll:llltem 5II‘IIindeXll:ll0ll}]

pattern = $UIA.CommonPattern,

action = $UIA.GetName,

control = (),

capture = (imageid = "img_20200929092507503", x = 445, y = 10)

68

pattern

Control pattern

SUIA.___

CommonPattern

Table 8-11 Adapter parameter list of UlAutomation

action
Action
SUIA.

GetName

scroll

control parameters

selection

hscroll_
amount

vscroll_ |item_ |item_
amount |index |value

result

ExpandCollapse
Pattern

Expand

Collapse

InvokePattern

Invoke

ScrollPattern

IsHorizontallyS
crollable

GetHorizontalVi
ewportRatio

GetHorizontalVi
ewportSize

HorizontalScroll

O1

IsVerticallyScrol
lable

GetVerticalView
portRatio

GetVerticalView
portSize

VerticalScroll

O1

TwoWayScroll

O1

O1

SelectionPatter
n

IsMultiSelectabl
e

IsSelectionNee
ded

GetSelectionBy
Texts

GetSelectionBy
Indexes

GetSelectablelt
emNum

GetSelectablelt
ems

SelectltemByTe
xt

02

SelectltemByin
dex

02

IsSelected

69

pattern action control parameters result

Control pattern Action scroll selection

SUIA.___ SEASEE hscroll_ | vscroll_ |item_ |item_
amount |amount |index |value

SelectionltemPa | SelectAdditiona
ttern Iy

Unselect

SelectOne

TogglePattern | Toggle

GetToggleState O
ValuePattern IsReadOnly O
GetValue O
SetValue O3 | O4
MouseExtensio | GetBoxCenterP
nPattern osition o5

GetBoxPosition
s 06

MoveToTheEle
mentCenter

LeftClickTheEle
menterCenter

RightClickTheEl
ementCenter

UnknownPatter |Unknown
n

1. default SUIA.NoAmount . 2. default 0. 3. default 0.
4. default $UIA.ModeNormal .
5. box_center_position_x, box_center_position_y are effective.

6. box_left_position_x, box_top_position_y, box_right_position_x, box_bottom_position_y
are effective.

Identifiers of “Control pattern” and “Action” will be prefixed with “SUIA.”

8.1.12 UlAutomation library

The adapter actions listed on the “Table 8-12” are frequently used operations in UlAutomation.
The control patterns and the actions of those adapter actions are fixed.

The function of each adapter action is the same as that of the UlAutomnation adapter action
with the same pair of the control pattern and the action.

70

(

expand_variable = true / false,
use_wildcard = true / false,

wait_timeout = Timeout,

cache_update = true / false,

path_version = $UIA.Version2,
control = Control spec,

WinActor.Adapter action name Preamble

window_rule_ref = Window_rule WinID name,
path = Control path JSON-format string,

wait_setting = Timeout setting,

/I milliseconds

wait_timeout_period = Wait condition,

wait_retry_max = Maximum number of retries,

/l or $UIA Version1

result = Variable name to receive the result,
capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

/l whether to expand embedded variables or not
/I whether to enable ambiguous specification with *’

/I Forced update flag of the cache, Default: false

The control pattern and the action set for each adapter action is shown on the table below.
Each value of control patterns and actions is fixed to the value on the table, and cannot be

specified.

Table 8-12 Control pattern and Action of UlAutomation libraries

Adapter action name Control pattern Action
UiaExpandMenu $UIA.ExpandCollapsePattern |$UIA.Expand
UiaCollapseMenu $UIA.ExpandCollapsePattern |$UIA.Collapse
UiaClick $UIA.InvokePattern SUIA.Invoke
UiaGetltemTextInList $UIA SelectionPattern SUIA.GetSelectionByTexts
UiaGetltemIndexInList $UIA SelectionPattern SUIA.GetSelectionBylndexes
UiaGetAllltemTextInList $UIA SelectionPattern SUIA.GetSelectableltems
UiaSelectltemTextInList $UIA SelectionPattern SUIA . SelectlitemByText
UiaSelectltemIndexInList $UIA SelectionPattern SUIA . SelectlitemBylndex
UiaSelectTab $UIA. SelectionltemPattern $UIA.SelectOne
UiaSelectRadioButton $UIA. SelectionltemPattern $UIA.SelectOne
UiaGetText $UIA ValuePattern SUIA.GetValue
UiaSetText $UIA ValuePattern SUIA . SetValue
UiaSetChecked $UIA. TogglePattern $UIA.SetChecked

For other parameters, see “8.1.11 UlAutomation.”

71

8.1.13 UlAutomation dump

WinActor.UiaDump Preamble
(
window_rule_ref = Window_rule WinID name,,
output_filename = Filename or Variable name,
wait_setting = Timeout option,
wait_timeout = Timeout period, /I milliseconds
capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

No value is returned.

For "output_filename," specify a filename string to output the dump result or a variable name
that stores a filename.

Table 8-13. Sources of the timeout period
Item type ‘ Description

SUIADUMP.WaitSettingOption The timeout is set in the “Option” dialog.
SUIADUMP.WaitSettingScenario | The timeout is set in the “Scenario information” window.

SUIADUMP.WaitSettingNode The timeout is set for “wait_timeout” in the “Property” pane.

“wait_setting” is optional. ‘SUIADUMP.WaitSettingScenario’ is the default.

For “wait_timeout”, give a timeout period in milliseconds or the variable that store a timeout
period. The timeout period should be in the range of 100 to 3,600,000. If the specified period
is out of the range, a warning message is displayed, and the nearer of the two values 100
and 3,600,000 is used instead.

If an anonymous identifier “ (two single quotes) is specified as a variable name, 10,000 is
used as the timeout period.

“wait_timeout” is optional. The default value is 10,000.

When ‘SUIADUMP.WaitSettingOption’ or ‘SUIADUMP.WaitSettingScenario’ is specified for
the “wait_setting,” the value specified for “wait_timeout” is not used. The “wait_timeout”

property of a node is output to the .wss file from WinActor only when ‘Use this "Property” is
selected for “Timeout setting” in the “Property” pane of the node.

72

8.2 Automatic recording (IE)
8.2.1 IE mode recording — Click

WinActor.ClickIE8 Preamble
(

window_rule_ref = Window_rule WinID name,

control = (Parameter name<check> = value, ...),

wait_setting = Timeout option,

wait_timeout = Timeout period, /I milliseconds

capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

No value is returned.

For “wait_setting”, give an option to indicate a source of the timeout period for the IE action
while running the scenario. The option is one of the followings.

Table 8-14. Sources of the timeout period

Item type ‘ Description
$IE.WaitSettingOption The timeout is set in the “Option” dialog.
$IE.WaitSettingScenario The timeout is set in the “Scenario information” window.
$IE.WaitSettingNode The timeout is set for “wait_timeout” in the “Property” pane.

“wait_setting” is optional. ‘$1E.WaitSettingScenario’ is the default.

For “wait_timeout,” give a timeout period in milliseconds or the variable that store a timeout
period. The timeout period should be in the range of 100 to 3,600,000. If the specified value
is out of the range, a warning message is displayed, and he nearer of the two values 100
and 3,600,000 is used instead.

If an anonymous identifier “ (two single quotes) is specified as a variable name, 10,000 is
used as the timeout period.

“wait_timeout” is optional. 10,000 is the default value.

When either ‘$IE.WaitSettingOption’ or ‘$IE.WaitSettingScenario’ is specified for
“wait_setting”, the setting in “wait_timeout” is not used.

The “wait_timeout” property of a node is output to the .wss7 file from WinActor only when

‘Use this “Property” is selected for “Timeout setting” in the “Property” pane of the node.

For "control," specify a parameter name for identify the target element. A parameter name
including spaces, such as "frame index" for example, should be enclosed in quotes.

"<check>" attached to "Parameter name" of "control" is for specifying check box status of the
Details tab displayed in the property of a node recorded in the IE mode.

<true> for checked and <false> for unchecked.

73

Any parameter names can be omitted.

The parameter names are as follows. The attributes of "control" for the IE mode recording is
the same for the actions described below.

Table 8-15. Parameter names for Click
Parameter name ‘ Description

tag Specify an HTML tag name of the target element by entering a value or
with a variable. A value should be a string.

'frame index' Specify a serial number assigned to the target frame in a document by
entering a value or with a variable. A value should be a number.

'tag index' Specify a serial number assigned to the target element in a frame by
entering a value or with a variable. A value should be a number.

ie_control_name Specify a name attribute value of the target element by entering a value
or with a variable. A value should be a string.

type Specify a type attribute value of the target element by entering a value
or with a variable. A value should be a string.

id Specify an id attribute value of the target element by entering a value or
with a variable. A value should be a string.

value Specify a value attribute value of the target element by entering a value
or with a variable. A value should be a string.

8.2.2 |E mode recording — Set Text

WinActor.SetTextIE8 Preamble
(

window_rule_ref = Window_rule WinID name,

control = (Parameter name<check> = value, ...),

value = String or variable name,

wait_setting = Timeout option,

wait_timeout = Timeout period, /I millisecons

capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

No value is returned.
For "value," specify a string to be set or a variable name that stores a string.
A constant of the "value" will be converted to a string even if it is a number.

When you do not set "value," specify the anonymous identifier " (two single quotes) in "value."
If you specify " (two double quotes), it means that you specify an empty string.

For “wait_setting” and “wait_timeout,” see the descriptions in “8.2.1 IE mode recording —
Click.”

8.2.3 |E mode recording — Select Item in List

WinActor.SelectListIE8 Preamble
(

window_rule_ref = Window_rule WinID name,

control = (Parameter name<check> = value, ...),

value = Expression or variable name,

kind = Item type,

wait_setting = Timeout option,

wait_timeout = Tmeout period, /I milliseconds

capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

No value is returned.

For "kind," specify the item type $SelectListIE8.index or $SelectListIES.text.

Table 8-16. Item types in the Select ltem in List

Item type Description

$SelectListlE8.index Selects an item in a list by specifying a zero-based index

$SelectListlE8.text Selects an item in a list by a string displayed in the list

For "value," specify an expression that results in a value for selecting a list box or a variable
name that stores a value.

For “wait_setting” and “wait_timeout,” see the descriptions in “8.2.11E mode recording — Click.”

8.2.4 |E mode recording — Get String

WinActor.GetTextIE8 Preamble
(

window_rule_ref = Window_rule WinID name,

control = (Parameter name<check> = value, ...),

value = Variable name to receive the result,

wait_setting = Timeout option,

wait_timeout = Timeout period, /I milliseconds

capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

The result is returned to the variable specified in "value."

If WinActor.GetTextIE8 appears in an assignment or expression, the result will not be stored
in the variable. Specifying the variable to receive the result is optional. When the assign

75

statement or expression appears in the WSS output of a flowchart, the variable to set in the
property for the return value is omitted.

For “wait_setting” and “wait_timeout,” see the descriptions in “8.2.1 IE mode recording —
Click.”

8.2.5 |E mode recording — Get Item in List

WinActor.GetListIE8 Preamble
(

window_rule_ref = Window_rule WinID name,

control = (Parameter name<check> = value, ...),

value = Variable name to receive the result,

kind = Item type,

wait_setting = Timeout option,

wait_timeout = Timeout period, /I milliseconds

capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

The result is returned to the variable specified in "value."

If WinActor.GetListIE8 appears in an assignment or expression, the result will not be stored
in the variable. Specifying the variable to receive the result is optional. When the assign
statement or expression appears in the WSS output of a flowchart, the variable to set in the
property for the return value is omitted.

For "kind," specify the item type $GetListIE8.index or $GetListIE8.text.

Table 8-17. ltem types in Get ltem in List

Item type ‘ Description
$GetListIE8.index Gets an index of a selected element in a list
$GetListIE8.text Gets a name of a selected element in a list

For “wait_setting” and “wait_timeout,” see the descriptions in “8.2.1 IE mode recording —
Click.”

8.2.6 |E mode recording — Get Check State

WinActor.GetChecklE8 Preamble
(

window_rule_ref = Window_rule WinID name,
control = (Parameter name<check> = value, ...),

value = Variable name to receive the result,

76

wait_setting = Timeout option,

wait_timeout = Timeout period, /I milliseconds

capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)
)

True or false is returned to the variable specified in "value."

If WinActor.GetCheckIE8 appears in an assignment or expression, the result will not be
stored in the variable. Specifying the variable to receive the result is optional. When the
assign statement or expression appears in the WSS output of a flowchart, the variable to set
in the property for the return value is omitted.

For “wait_setting” and “wait_timeout,” see the descriptions in “8.2.1 IE mode recording —
Click.”

8.2.7 |IE mode recording — Get Enable/Disable State

WinActor.GetEnablelE8 Preamble
(

window_rule_ref = Window_rule WinID name,

control = (Parameter name<check> = value, ...),

value = Variable name to receive the result,

wait_setting = Timeout option,

wait_timeout = Timeout period, /I milliseconds

capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

True or false is returned to the variable specified in "value."

If WinActor.GetEnablelE8 appears in an assignment or expression, the result will not be
stored in the variable. Specifying the variable to receive the result is optional. When the
assign statement or expression appears in the WSS output of a flowchart, the variable to set
in the property for the return value is omitted.

For “wait_setting” and “wait_timeout,” see the descriptions in “8.2.1 IE mode recording —
Click.”

8.2.8 |E mode recording — Get Value in Table

WinActor.GetTableinfolE8 Preamble

(
window_rule_ref = Window_rule WinID name,
control = (Parameter name<check> = value, ...),
get_tableinfo_mode = Get mode,
valuerow = Specify a row number,
valuecolumn = Specify a column number,

7

result = Variable name to receive the result,

file = Filename string or variable name that stores a filename,

wait_setting = Timeout option,

wait_timeout = Timeout period, // milliseconds

capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)
)

For "get_tableinfo_mode," specify one of the following get modes.

Table 8-18. Get modes for Get Value in Table

Get mode Description

$IEGetTablelnfo.GetCell Gets a value in a cell
$IEGetTablelnfo.ExistCell Checks the cell existence (true/false)
$IEGetTablelnfo.GetRow Gets the number of rows
$IEGetTablelnfo.GetColumn Gets the number of columns
$IEGetTablelnfo.GetAll Gets all values in a table

When the get mode is $IEGetTablelnfo.GetCell or $IEGetTablelnfo.ExistCell, specify a
numeric value of a row number or a variable name that stores a row number in "valuerow,"
and specify a numeric value of a column number or a variable name that stores a column
number in "valuecolumn."

If $IEGetTablelnfo.GetAll is specified for the get mode, the result will be written to a file
specified in "file" in CSV format.

If other than $IEGetTablelnfo.GetAll is specified for the get mode, the result will be returned
to a variable specified in "result."

If WinActor.GetTableinfolE8 appears in an assignment or expression, the result will not be
stored in the variable. Specifying the variable to receive the result is optional. When the
assign statement or expression appears in the WSS output of a flowchart, the variable to set
in the property for the return value is omitted.

For “wait_setting” and “wait_timeout,” see the descriptions in “8.2.1 IE mode recording —
Click.”

8.2.9 |IE mode recording — Get All Items in List

WinActor.GetAllListlE8 Preamble
(

window_rule_ref = Window_rule WinID name,

control (Parameter name<check> = value, ...),

file = Variable name or filename,

78

wait_setting = Timeout option,

wait_timeout = Timeout period, /I milliseconds

capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)
)

No value is returned.

For "file," specify a filename string to output the result or a variable name that stores a
filename.

For “wait_setting” and “wait_timeout,” see the descriptions in “8.2.1 IE mode recording —
Click.”

8.3 Action, User, Variable
8.3.1 Image Matching

WinActor.ImageMatch [_OriginallD_f63cb690ce1d = image ID number]
(
window_rule_ref = Window_rule WinID name,
targetrange = (x = X-coordinate, y = Y-coordinate, width = width, height = height),
/I Image search range
rawtargetrange = (x = X-coordinate, y = Y-coordinate, width = width, height = height),
/I Rectangular range for recording mouse cursor
mousecoordinate = (enable = true / false, x = X-coordinate, y = Y-coordinate),
I/l Mouse action coordinates

mouseaction = Mouse action,
scale = Scale, /I Scale
selectshape = Rectangle / Ellipse mode, [/ Red-framed matching mode: Rectangle or Ellipse
similarity = Match ratio, // 0-100 %
timeout = Timeout time, /I Milliseconds
searchrange = (enable = true / false , x = X-coordinate, width = width, y = Y-coordinate, height
= height, startpoint= origin, x_coordinate = x-coordinate value, y_coordinate = y-coordinate value),
realtime = true / false, Il true when loading matching images on execution
realtimefile = File path string or variable name,
Il Filename or folder name when realtime = true
useredframe = true / false, [true when using the red-framed reference image
Il and the path-specified matching images
pathspecified = File / Folder, /I How to specify path-specified matching image files
imagesplit = true / false, /I true for subdivision matching
value = Variable name to receive the result,
capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

79

The "_OriginallD_f63ch690ce1d" attribute of the preamble specifies the ID that identifies the
image stored in WinActor, so do not change it.

You can add "comment" and "name" to the preamble.

The image file needs to be edited (changed or added) in WinActor.
The file will not be replaced even if you rename it in WSS.
Specifying “ selectshape” is optional. If omitted, it is assumed to be the Rectangle mode.

When loading matching images on execution by specifying “realtime = true” and
“useredframe = true,” both the red-framed reference image and the path-specified matching
images are used. Specifying “useredframe” is optional. The default value is false. Although
“realtime = false” and “useredframe = true” can be specified simultaneously, only the red-
framed reference image is used in that case.

Specifying “pathspecified” is optional. If omitted, it is assumed to be the File.

If the mouse action is "Matching only," the result will be returned to the variable specified in
"value."

If WinActor.ImageMatch appears in an assignment or expression, the result will not be stored
in the variable. Specifying the variable to receive the result is optional. When the assign
statement or expression appears in the WSS output of a flowchart, the variable to set in the
property for the return value is omitted.

For "mouseaction," specify one of the following mouse actions.

Table 8-19. Mouse actions for Image Matching

Mouse action ‘ Description
$ImageMatch.Check Matching only
$ImageMatch.LeftClick Left button click
$ImageMatch.RightClick Right button click
$ImageMatch.LeftDouble Left button double-click
$ImageMatch.RightDouble Right button double-click
$ImageMatch.Move Mouse cursor move
$ImageMatch.LeftTriple Left button triple-click
$ImageMatch.RightTriple Right button triple-click
$ImageMatch.LeftClickDrag Holds left button and drags to the matched position
$ImageMatch.RightClickDrag Holds right button and drags to the matched position

80

For "scale," specify one of the following scales.

Table 8-20. Scales for Image Matching

Scale Description
$IlmageMatch.Same 1x
$ImageMatch.Half 1/2
$IlmageMatch.Quarter 1/4

For "selectshape," specify one of the following shape modes.

Table 8-21. Shape modes for Image Matching

Description

Shape mode

$ImageMatch.SelectShape_Rectangle |Rectangle
$ImageMatch.SelectShape_Ellipse Ellipse

For "startpoint,” specify one of the following origins.

Table 8-22. Origins for Image Matching

Origin Description
$ImageMatch.StartPoint_LeftTop Upper left
$ImageMatch.StartPoint_LeftBottom Lower left
$ImageMatch.StartPoint_RightTop Upper right
$ImageMatch.StartPoint_RightBottom |Lower right

For "x_coordinate" and "y_coordinate," specify one of the following coordinate values.

Table 8-23. Coordinate values for Image Matching

Coordinate value Description
$ImageMatch.Coordinate_Direct Coordinates are specified in pixels
$ImageMatch.Coordinate_Percent Coordinates are specified in percentage

For "pathspecified," specify one of the following path-specified matching image files.

Table 8-24. Path-specified matching image files for Image Matching

Path-specified matching image files Description

$ImageMatch.Path_File File path

81

Path-specified matching image files Description

$IlmageMatch.Path_Folder Folder path

8.3.2 Contour Matching

WinActor.OutlineMatch [_OriginallD_f63cb690ce1d = image ID number]
(
window_rule_ref = Window_rule WinID name,
targetrange = (x = X-coordinate, y = Y-coordinate, width = width, height = height),
/I Image search part
mousecoordinate = (enable = true / false, x = X-coordinate, y = Y-coordinate),
I/l Mouse action coordinates

mouseaction = Mouse action,
precision = Precision,
scale = Scale,
timeout = Timeout time, /I Milliseconds
searchrange = (enable = true / false , x = X-coordinate, width = width, y = Y-coordinate, height
= height, startpoint= origin, x_coordinate = x-coordinate value, y_coordinate = y-coordinate value),
realtime = true / false, Il true when loading matching images on execution
realtimefile = File path string or variable name,
Il Specify a filename when realtime = true
useredframe = true / false, Il true when using the red-framed reference image
/I and the path-specified matching images
imagesplit = true / false, /I true for subdivision matching
pathspecified = File / Folder, /I How to specify path-specified matching image files
value = Variable name to receive the result,
capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

The "_OriginallD_f63ch690ce1d" attribute of the preamble specifies the ID that identifies the
image stored in WinActor, so do not change it.

You can add "comment” and "name" to the preamble.

The image file needs to be edited (changed or added) in WinActor.
The file will not be replaced even if you rename it in WSS.

When loading matching images on execution by specifying “realtime = true” and
“useredframe = true,” both the red-framed reference image and the path-specified matching
images are used. Specifying “useredframe” is optional. The default value is “false.” Although
“realtime = false” and “useredframe = true” can be specified simultaneously, only the red-
framed reference image is used in that case.

Specifying “pathspecified” is optional. If omitted, it is assumed to be the File.

82

If the mouse action is "Matching only," the result will be returned to the variable specified in

"value."

If WinActor.OutlineMatch appears in an assignment or expression, the result will not be
stored in the variable. Specifying the variable to receive the result is optional. When the
assign statement or expression appears in the WSS output of a flowchart, the variable to set
in the property for the return value is omitted.

For "mouseaction," specify one of the following mouse actions.

Table 8-25. Mouse actions for Contour Matching

Mouse action

$OutlineMatch.Check

Description

Matching only

$OutlineMatch.LeftClick

Left button click

$O0utlineMatch.RightClick

Right button click

$OutlineMatch.LeftDouble

Left button double-click

$OutlineMatch.RightDouble

Right button double-click

$OutlineMatch.Move

Mouse cursor move

$OutlineMatch.LeftTriple

Left button triple-click

$OutlineMatch.RightTriple

Right button triple-click

$OutlineMatch.LeftClickDrag

Holds left button and drags to the matched position

$OutlineMatch.RightClickDrag

Holds right button and drags to the matched position

For "precision," specify one of the following precisions.

Table 8-26. Precisions for Contour Matching

Precision ‘ Description

$OutlineMatch.LowPrecision

Low (speed)

$OutlineMatch.MiddlePrecision

Middle (standard)

$OutlineMatch.HighPrecision

High (precision)

For "scale," specify one of the following scales.

Table 8-27. Scales for Contour Matching

Scale ‘ Description

$OutlineMatch.Same 1X
$OutlineMatch.Half 1/2
$OutlineMatch.Quarter 1/4

For "startpoint,” specify one of the following origins.

Table 8-28. Origins for Contour Matching

$O0utlineMatch.StartPoint_LeftTop Upper left
$O0utlineMatch.StartPoint_LeftBottom Lower left
$O0utlineMatch.StartPoint_RightTop Upper right
$O0utlineMatch.StartPoint_RightBottom Lower right

For "x_coordinate" and "y_coordinate," specify one of the following coordinate values.

Table 8-29. Coordinate values for Contour Matching

Coordinate value Description
$O0utlineMatch.Coordinate_Direct Coordinates are specified in pixels
$O0utlineMatch.Coordinate _Percent Coordinates are specified in percentage

For "pathspecified," specify one of the following path-specified matching image files.

Table 8-30. Path-specified matching image files for Image Matching

Path-specified matching image files ‘ Description
$O0utlineMatch.Path_File File path
$O0utlineMatch.Path_Folder Folder path

8.3.3 OCR Matching

WinActor.OCRMatch [_OriginallD_f63cb690ce1d = image ID number]
(
window_rule_ref = Window_rule WinID name,
targetrange = (x = X-coordinate, y = Y-coordinate, width = width, height = height),
/I Image search part
mousecoordinate = (enable = true / false, x = X-coordinate, y = Y-coordinate),
/I Mouse action coordinates

mouseaction = Mouse action,
timeout = Timeout time, /I Milliseconds
searchrange = (enable = true / false , x = X-coordinate, width = width, y = Y-coordinate, height

= height, startpoint= origin, x_coordinate = x-coordinate value, y_coordinate = y-coordinate value),
ocrmatchingtext = Matching string,

value = Variable name to receive the result,

84

capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

The "_OriginallD_f63cb690ce1d" attribute of the preamble specifies the ID that identifies the
image stored in WinActor, so do not change it.

You can add "comment" and "name" to the preamble.
The image file needs to be edited (changed or added) in WinActor.
The file will not be replaced even if you rename it in WSS.

If the mouse action is "Matching only," the result will be returned to the variable specified in
"value."

If WinActor.OCRMatch appears in an assignment or expression, the result will not be stored
in the variable. Specifying the variable to receive the result is optional. When the assign
statement or expression appears in the WSS output of a flowchart, the variable to set in the
property for the return value is omitted.

For "mouseaction," specify one of the following mouse actions.

Table 8-31. Mouse actions for OCR Matching

Mouse action ‘ Description
$OCRMatch.Check Matching only
$OCRMatch.LeftClick Left button click
$OCRMatch.RightClick Right button click
$OCRMatch.LeftDouble Left button double-click
$OCRMatch.RightDouble Right button double-click
$OCRMatch.Move Mouse cursor move
$OCRMatch.LeftTriple Left button triple-click
$OCRMatch.RightTriple Right button triple-click
$OCRMatch.LeftClickDrag Holds left button and drags to the matched position
$OCRMatch.RightClickDrag Holds right button and drags to the matched position

For "startpoint," specify one of the following origins.

Table 8-32. Origins for OCR Matching

Origin ‘ Description
$OCRMatch.StartPoint_LeftTop Upper left
$OCRMatch.StartPoint_LeftBottom Lower left
$OCRMatch.StartPoint_RightTop Upper right

Description

$OCRMatch.StartPoint_RightBottom Lower right

For "x_coordinate" and "y_coordinate," specify one of the following coordinate values.

Table 8-33. Coordinate values for OCR Matching

Coordinate value ‘ Description
$OCRMatch.Coordinate_Direct Coordinates are specified in pixels
$OCRMatch.Coordinate_Percent Coordinates are specified in percentage

8.3.4 Wait for Window Status

WinActor.WindowStateWait Preamble
(

window_rule_ref = Window_rule WinIDname,

win_state = Expected status,
state = Wait type,
timeout = Timeout time,
/I Milliseconds Effective when $Window.WaitFor is specified in "Wait type"
value = Variable name to receive the result,
capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

For "win_state," specify one of the following expected status.

Table 8-34. Expected status for Wait for Window Status

Expected status ‘ Description
$Window.Front Window is at the front
$Window.Behind Window is not at the front
$Window.Enable Window is enabled
$Window.Disable Window is disabled
$Window.Appear Window is shown
$Window.Disappear Window is hidden

For "state," specify one of the following wait types.

86

Table 8-35. Wait types for Wait for Window Status

Wait type ‘ Description
$Window.WaitFor Waits until timeout
$Window.CheckOnly Gets status only

True or false is returned to the variable specified in "value."

If WinActor.WindowStateWait appears in an assignment or expression, the result will not be
stored in the variable. Specifying the variable to receive the result is optional. When the
assign statement or expression appears in the WSS output of a flowchart, the variable to set
in the property for the return value is omitted.

8.3.5 Wait for Time

WinActor.TimerWait Preamble
(
mode = Mode,
timeout = Timeout time,
/I Milliseconds or variable name, when the mode is $TimerWait.Sleep
wait_time = Wait time,
I String or variable name, when the mode is $TimerWait.Until
check_time = Check time,
/I String or variable name, when the mode is $TimerWait.Check
check value = Variable name to receive the check result,
date_format = Date format,
timezone = Time zone

For "mode," specify one of the following modes:

Table 8-36. Modes for Wait for Time

Mode ‘ Description
$TimerWait.Sleep Waits for the specified time
$TimerWait.Until Waits until the specified time
$TimerWait.Check Checks if the specified time comes

For "date_format," specify one of the following or the date format string allowed by WinActor.

Table 8-37. Date formats for Wait for Time
Date format ‘ Description

$TimerWait.ScenariolnfoDateFormat Specifies a format on the Scenario information
property

$TimerWait.OptionIinfoDateFormat Specifies a format on the Option dialog

For "timezone," specify one of the following or the time zone string allowed by WinActor.

Table 8-38. Time zones for Wait for Time

Time zone Description
$TimerWait.ScenariolnfoTimeZone Specifies a format on the Scenario information
property
$TimerWait.OptionInfoTimeZone Specifies a format on the Option dialog
$TimerWait.DefaultTimeZone OS default

If "mode" is to "check if the specified time comes," true or false will be returned to the variable
specified in "check_value."

For details, see "Time format" under the "Wait for Time" node in "WinActor Operation
Manual."

If WinActor.TimerWait appears in an assignment or expression, the result will not be stored
in the variable. Specifying the variable to receive the check result is optional. When the assign
statement or expression appears in the WSS output of a flowchart, the variable to set in the
property for the check result is omitted.

8.3.6 Send Text

WinActor.SendText Preamble
(

window_rule_ref = Window_rule WinIDname,

control = (instance<check> = expression, text<check> = expression, position<check> =
position),

value = String or variable name,

sendcr = true or false,

verify = true or false,

capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

No value is returned.

For "value," specify a string to be sent or a variable name that stores the sent contents. When
you do not set "value," specify the anonymous identifier ".

A constant of the "value" attribute will be converted to a string even if it is a number.
For "sendcr" and "verify," specify true or false. If omitted, it is assumed that false is specified.

A warning will be issued when a value other than true or false is specified, and the process
will continue assuming that false is specified.

The meanings of "sendcr" and "verify" are as follows.

Table 8-39. "sendcr" and "verify"

Action Description

sendcr Sends the return key

verify Verifies a sent result (Pauses in case of verification error)

8.3.7 Execute Command

WinActor.Launcher Preamble

(

command = Command name or variable name that stores the command name,
option = Option string or variable name that stores the option string,
execute_mode = Execution mode,

set _value = Variable name to receive the result

)

For "execute_mode," specify one of the following execution modes.

Table 8-40. Execution modes for Execute Command

Execution mode Description
$Launcher.Single Asynchronous execution (single instance)
$Launcher.Multi Asynchronous execution
$Launcher.WaitForEnd Synchronous execution (receives result)

If "execute_mode = $Launcher.WaitForEnd” is specified, the result value will be returned to
the variable specified for "set_value."

If WinActor.Launcher appears in an assignment or expression, the result will not be stored in
the variable. Specifying the variable to receive the result is optional. When the assign
statement or expression appears in the WSS output of a flowchart, the variable to set in the
property for the return value is omitted.

89

8.3.8 Run Script

WinActor.Script Preamble
(
window_rule_ref = Window_rule WinID name,
environment_type = Variable sharing type,
library_provider = Library provider (string),
library_id = Library ID (string),
library_version = Library version (string),

library_original_name = Library name (string),
edit_lock = true or false,

Script parameter description = value or variable name depending on the description,
/I Arrange this line by the number of parameters

/*** Note ***/
note = @""ll
Annotation description

/*** Note End ***/
[*** Script ***/

script = @llllll
Script description

[*** Script End ***/

Annotation and script should be written between the line that ends with @""" and the line that
starts with "™".

The script parameter description should be enclosed in " (two single quotes) and used as an
identifier.

"Parameter name" is a name for exchanging a value with WinActor in the script description.

Table 8-41. Script parameter descriptions for Run Script

Script parameter description ‘ Description
''Parameter_name!' Variable name or value
''Parameter_name|ltem1,ltem2,ltem3...!" | Pull-down menu
'$Parameter_name$' Variable name
'@Parameter_name@' WinID name
''Parameter_name|FILE|" File selection dialog
''Parameter_name|FILE:EXCEL|" File selection dialog (Excel)

90

Script parameter description ‘ Description
''Parameter_name|FILE:ZIP|" File selection dialog (zip)
'IParameter_name|FILE:CSV|! File selection dialog (csv)
''Parameter_name|FILE:IMG|!" File selection dialog (image)

For "environment_type," specify one of the following variable sharing types:

Table 8-42. Variable sharing types for Run Script

Variable sharing type ‘ Description
$Script.Envindependent Sets variables for each script
$Script.EnvShared Shares variables with other scripts

The Run Script node of each sample library has version information parameters
(library_provider, library_id, library_version, library_original_name). These parameters
cannot be changed in WSS.

If "edit_lock" is omitted, it will be assumed that false is specified.

Regarding the Run Script node with its script locked (edit_lock) in WinActor, its script
description will not be displayed in WSS and cannot be changed.

No value is returned.

Example

WinActor.Script [name = "Countdown", comment = "]

(

window_rule_ref ="",
environment_type = $Script.Envindependent,
library_provider = "NTT Advanced Technology Corporation ",
library_id = "AT05001L",
library_version = "1.0.0",
library_original_name = "Countdown",
edit_lock = false,
'$Counter$' = a,
/*** Note ***/
note = @""

Counts down a number of the specified variable.

Counter: Specify a variable name of the countdown target.

/*** Note End ***/

[*** Script ***/

script = @"""
¢ = GetUMSVariable($Counter$)
ci = int(c)
ci=ci-1

SetUMSVariable $Counter$, ci

[*** Script End ***/

8.3.9 Run Python

WinActor.PythonScript Preamble
(

window_rule_ref = Window_rule WinID name,
environment_type = Variable sharing type,
library_provider = Library provider (string),
library_id = Library ID (string),
library_version = Library version (string),

library_original_name = Library name (string),
edit_lock = true or false,

Script parameter description = value or variable name depending on the description,
I/l Arrange this line by the number of parameters

/*** Note ***/
note = @Illlll
Annotation description

/*** Note End ***/
[*** Script ***/

Script = @llllll”
PythonScript description

[*** Script End ***/

Annotation should be written between the line that ends with @"" , which includes three
double quotes, and the line that starts with """, which is three double quotes.

Python script should be written between the line that ends with @"""" , which includes four
double quotes, and the line that starts with "™, which is four double quotes, to avoid
interfering with the other part of the Python script.

92

The script parameter description should be enclosed in ' ' (single quotes) and used as an
identifier.

"Parameter name" is a name for exchanging a value with WinActor in the Python script
description. The descriptions are the same as listed in the “Table 8-41. Script parameter
descriptions for Run Script.”

Table 8-43. Script parameter descriptions for Run Python

Script parameter description ‘ Description
'IParameter_name!' Variable name or value
'IParameter_name|ltem1,ltem2,ltem3...!" | Pull-down menu
'$Parameter_name$' Variable name
'@Parameter_name@' WinID name
''Parameter_name|FILE|" File selection dialog
'IParameter_name|FILE:EXCEL|" File selection dialog (Excel)
'lParameter_name|FILE:ZIP|!" File selection dialog (zip)
''Parameter_name|FILE:CSV|! File selection dialog (csv)
'IParameter_name|FILE:IMG|! File selection dialog (image)

For "environment_type," specify one of the following variable sharing types.

Table 8-44. Variable sharing types for Run Python

Variable sharing type ‘ Description
$Script.Envindependent Sets variables for each Python script
$Script.EnvShared Shares variables with other Python scripts

The Run Python node of each sample library has version information parameters
(library_provider, library_id, library_version, library_original name). These parameters
cannot be changed in WSS.

If "edit_lock" is omitted, it will be assumed that false is specified.

Regarding the Run Python node with its script locked (edit_lock) in WinActor, its script
description will not be displayed in WSS and cannot be changed.

No value is returned.

Example

WinActor.PythonScript [name = "Countdown", comment = ""]

window_rule_ref ="",
environment_type = $Script.Envindependent,

library_provider ="",
library_id =",
library_version =",
library_original_name ="",
edit_lock = false,

‘IString1!’" = “first”,
‘IString2!’ = “second”,

'$ConcatenatedResult$' = result_py, /*** Note ***/
note = @Illlll
Concatenates two strings

/*** Note End ***/

[*** Script ***/

script = @"""
result = " join([!String1!, !String2!])
vm_result = $ConcatenatedResult$

winactor.set_variable(vm_result, result)

[*** Script End ***/

8.3.10 Excel Operation

WinActor.Excel Preamble

(

operation = Excel operation,
file_path = Excel file path or variable name,
Il Required for any operation
sheet = Sheet name or variable name,
/I Required when the operation is to set or get a value
cell = Cell position or variable name,

source_value = Value to be set or variable name,

/I Required when the operation is to set a value
target_value = Variable name to receive the result,

I/l Required when the operation is to get a value
macro = Macro name or variable name

/I Required when the operation is to run a macro

/I Required when the operation is to set or get a value

For "operation," specify one of the following Excel operations.

94

Table 8-45. Excel operations

Excel operation ‘ Description
$Excel.GetValue Gets a value
$Excel.SetValue Sets a value
$Excel.RunMacro Runs a macro

"Or variable name" means the name of a variable that stores necessary information.

If the operation is to get a value, the result will be returned to the variable specified in
"target_variable."

If WinActor.Excel appears in an assignment or expression, the result will not be stored in the
variable. Specifying the variable to receive the result is optional. When the assign statement
or expression appears in the WSS output of a flowchart, the variable to set in the property
for the return value is omitted.

8.3.11 Clipboard

WinActor.Clipboard Preamble
(
mode = Qperation,
set value = Expression, /I Required when the operation is $ClipBoard.Set
get_value = Variable name to receive the result

For "mode," specify one of the following operations.

Table 8-46. Clipboard operations

Clipboard operation ‘ Description
$ClipBoard.Set Sets a value to the clipboard
$ClipBoard.Get Gets a value from the clipboard

When setting a value to the clipboard, "get_value" can be omitted.

When getting a value from the clipboard, the value is returned to the variable specified in
"get value," and "set_value" can be omitted.

If WinActor.Clipboard appears in an assignment or expression, the result will not be stored
in the variable. Specifying the variable to receive the result is optional. When the assign
statement or expression appears in the WSS output of a flowchart, the variable to set in the
property for the return value is omitted.

The following WinActor.SetToClipboard and WinActor.GetFromClipboard can be used with
less arguments and are easier to understand.

8.3.12 Set To Clipboard

WinActor.SetToClipboard Preamble
(

String or variable name that stores contents to be set in the clipboard

No value is returned.

8.3.13 Get From Clipboard

WinActor.GetFromClipboard Preamble
(

get_value = Variable name to receive the result

)

The result value is returned to the variable specified in "get_value."

If WinActor.GetFromClipboard appears in an assignment or expression, the result will not be
stored in the variable. Specifying the variable to receive the result is optional, but () are
required. When the assign statement or expression appears in the WSS output of a flowchart,
the variable to set in the property for the result is omitted.

Example

| cv = WinActor.GetFromClipboard [name = "get from clipboard"] ();

8.3.14 Waiting Dialog

WinActor.WaitBox Preamble
(

mode = Mode,
message = Message string or variable name that stores a message

)

For "mode," specify one of the following modes:

96

Table 8-47. Modes for Waiting Dialog

Mode ‘ Description
$WaitBox.Confirm Confirmation dialog (displays OK button only)
$WaitBox.Query Inquiry dialog (displays Continue and Stop buttons)

No value is returned.

8.3.15 Input Dialog

WinActor.InputBox Preamble

(

message = Message string or variable name that stores a message,
value = Variable name to receive the result

The result is returned to the variable specified in "value."

If WinActor.InputBox appears in an assignment or expression, the result will not be stored in
the variable. Specifying the variable to receive the result is optional. When the assign
statement or expression appears in the WSS output of a flowchart, the variable to set in the
property for the return value is omitted.

A constant of the "message" attribute will be converted to a string even if it is a number.

8.3.16 Selection Dialog

WinActor.SelectBox Preamble
(
message = Message string or variable name that stores a message,
items = Option list,
value = Variable name to receive the result

Specify "option list" of "items" by enclosing option strings in parentheses.
You can use a string or a constant that stores a string.
Numbers are treated as strings.

Example:

items = ("red", "blue", "white"),
items = (1, 2, 3),

The result is returned to the variable specified in "value.

If WinActor.SelectBox appears in an assignment or expression, the result will not be stored
in the variable. Specifying the variable to receive the result is optional. When the assign
statement or expression appears in the WSS output of a flowchart, the variable to set in the
property for the return value is omitted.

8.3.17 Sound (Buzzer)

| WinActor.Beep Preamble ()

This is to make a buzzer sound.
There is no argument.

No value is returned.

8.3.18 Sound (WAVE file)

WinActor.Speaker [name = "name", comment = "comment", _OriginallD_f63cb690ce1d = 268]

(
selectFile = WAVE filename,

wait = true / false /I true when waiting until the playback ends

The "_OriginallD_f63ch690ce1d" attribute of the preamble specifies the ID that identifies the
WAVE file stored in WinActor, so do not change it.

You can add "comment" and "name" to the preamble.
The WAVE file needs to be edited (changed or added) in WinActor.
The file will not be replaced even if you rename it in WSS.

No value is returned.

8.3.19 Set Variable Value

| Variable name to receive the result = Expression Preamble ;

Set Variable Value is written by using an assignment statement.

You can set "comment" and "name" in the preamble.

When writing as an action:

WinActor.SetVariable Preamble (
val = Constant expression,
value = Variable name to receive the result

98

D)

The result of a constant expression is returned to the variable specified in "value."

If WinActor.SetVariable appears in an assignment or expression, the result will not be stored
in the variable. Specifying the variable to receive the result is optional. When the assign
statement or expression appears in the WSS output of a flowchart, the variable to set in the
property for the return value is omitted.

When written by using an assignment statement, "val =" can be omitted.

Example: All of the following have the same result.

WinActor.SetVariable(val = 100, value = height);
height = WinActor.SetVariable(val = 100);
height = WinActor.SetVariable(100);

height = 100;

8.3.20 Copy Variable Value

| Variable name to receive the result = Expression Preamble ;

Copy Variable Value is written by using an assignment statement.

You can set "comment" and "name" in the preamble.

When writing as an action:

WinActor.CopyVariable Preamble
(

from = Source variable name,
to = Destination variable name,

The contents of the source variable is copied to the variable specified in "to."

If WinActor.CopyVariable appears in an assignment or expression, the result will not be
stored in the variable specified in "to." Specifying "to" is optional.

When written by using an assignment statement, "from =" can be omitted.

Example: All of the following have the same result.

WinActor.CopyVariable(from = height, to = width);
width = WinActor.CopyVariable(from = height);
width = WinActor.CopyVariable(height);

width = height;

99

8.3.21 Get Date and Time

WinActor.GetDateTime Preamble
(

format = Format type,

date_format = Date format,

timezone = Time zone,

value = Variable name to receive the result

For "format," specify one of the following format types.

Table 8-48. Format types for Get Date and Time

Format type ‘ Description
$GetDateTime.DateTime Date and time
$GetDateTime.Date Only date
$GetDateTime.Time Only time

For "date_format," specify one of the following or the date format string allowed by WinActor.

Table 8-49. Date format for Get Date and Time

Date format ‘ Description

$GetDateTime.ScenariolnfoDateFormat Specifies a format on the Scenario information
property (This date format is applied when
"date_format" is omitted)

$GetDateTime.OptionInfoDateFormat Specifies a format on the Option dialog

For "timezone," specify one of the following or the time zone string allowed by WinActor.

Table 8-50. Time zone for Get Date and Time

Time zone ‘ Description

$GetDateTime.ScenariolnfoTimeZone Specifies a time zone on the Scenario information
property (This time zone is applied when
"timezone" is omitted)

$GetDateTime.OptionInfoTimeZone Specifies a time zone on the Option dialog
$GetDateTime.DefaultTimeZone OS default

"date_format" and "timezone" can be omitted.

100

The result is returned to the variable specified in "value."

If WinActor.GetDateTime appears in an assignment or expression, the result will not be
stored in the variable. Specifying the variable to receive the result is optional. When the
assign statement or expression appears in the WSS output of a flowchart, the variable to set
in the property for the return value is omitted.

8.3.22 Get Username

WinActor.GetUserName Preamble

(

value = Variable name to receive the result

The result is returned to the variable specified in "value."

If WinActor.GetUserName appears in an assignment or expression, the result will not be
stored in the variable. Specifying the variable to receive the result is optional, but () are
required. When the assign statement or expression appears in the WSS output of a flowchart,
the variable to set in the property for the result is omitted.

Example:

| uname = WinActor.GetUserName [Comment = "Get username"] ();

8.3.23 Four Arithmetic Operations

Four Arithmetic Operations is written by using an expression and assignment statement.

When writing as an action:

WinActor.Calculate Preamble (
operator = Operation,

left = Left operand of the binary operation,
right = Right operand of the binary operation,
value = Variable name to receive the result

For "operator," specify one of the following operations.

Table 8-51. Four Arithmetic Operations

$Calculate.Plus

$Calculate.Minus
$Calculate.Mul

101

$Calculate.Div

Numbers, variable names, and expressions can be written in the operands of the binary
operation.

When an expression is written, the compiler automatically generates a node for the operation
of the expression.

The operation result is returned to the variable specified in "value."

If WinActor.Calculate appears in an assignment or expression, the result will not be stored in
the variable. Specifying the variable to receive the result is optional. When the assign
statement or expression appears in the WSS output of a flowchart, the variable to set in the
property for the return value is omitted.

8.3.24 Count Up

Count Up is written by using an expression and assignment statement.

When writing as an action:

WinActor.CountUP Preamble (
value = Variable name,
add = Incremental constant expression

No value is returned.
The incremental constant is added to the variable specified in "value."

If a negative value is specified for the constant, a warning will be issued in WinActor.

8.3.25 Full/Half-Width Conversion

WinActor.TextConvert Preamble

(
operation = Operation,
target_variable = Variable name that stores a conversion target string

For "operation," specify one of the following operations.

102

Table 8-52. Operations for Full/Half-Width Conversion

Operation ‘ Description
$FullHalfWidth. ToFullWidth Converts to full-width characters
$FullHalfWidth.ToHalfWidth Converts to half-width characters

No value is returned.

8.3.26 Watch Events

| WinActor.EventsWatch Preamble ()

This begins watching events set in Events and calls the corresponding action when an event
trigger is detected.

There is no argument.

8.3.27 Register EventWatcher

| WinActor.EventAdd Preamble (Events EventWatcher name)

This registers an event in Events as a EventWathcer.

Specify EventWatcher name to register as an argument.

8.3.28 Cancel EventWatcher

| WinActor.EventRemove Preamble (Events EventWatcher name)

This cancels an EventWatcher.

Specify EventWatcher name to cancel as an argument.

8.3.29 Ignore Events

| WinActor.Eventslgnore Preamble ()

This terminates watching events and begins ignoring event triggers.

There is no argument.

103

8.4 WinActor Mail, HTTP, JSON
8.4.1 Mail Reception Settings

WinActor.MailReceiveSet Preamble
(
mail_rule_info = Mail reception conditions,
host_name = String or variable, |/ Hostname of the incoming mail server
user = String or variable, I/ Username to connect to the incoming mail server
pass = String or variable, |/ Password to connect to the incoming mail server
auth_type = Authentication type, |/ See below
port = Port number, /I Integer value 110, efc.
conn_time = Connection timeout, [/ Milliseconds 10000, etc. (10 seconds)
cmd_time = Reception timeout, I/ Milliseconds 10000, etc. (10 seconds)
mail_input = String or variable, I/ Mail folder
is_del_mail = true / false, /I Whether to delete received mails from server
attach_save = true / false, /I Whether to save attached files
extention_not_save = true / false, // Space-separated, valid when extention_not_save is true
except_extension = "*.exe *.bat *.vbs *.msi *.jar",
/I Specify attached file extensions not to save
security_type = Secure connection type
/I See below
);

This is to configure the mail reception settings.

No value is returned.

For "auth_type," specify one of the following authentication types.

Table 8-53. Authentication types for Set Mail Reception

Authentication type ‘ Description
$MailAuth.UserPass USER/PASS
$MailAuth. APOP APOP

For "security_type," specify one of the following secure connection types.

Table 8-54. Secure connection types for Set Mail Reception

Secure connection type ‘ Description
$MailSecurity.No None
$MailSecurity. TLS_SSL POP3S
$MailSecurity.StartTLS StartTLS

104

e Mail reception conditions "mail_rule_info"
Write the conditions for receiving mails. You can write multiple conditions by separating them

with commas. Only mails that meet all the conditions will be received.

The syntax of the condition is as follows:

(item = Item, cond = Condition, value = Value)

or

(item = Item, cond = Condition, var = Variable name)

For "item ," specify one of the following items.

Table 8-55. ltems for mail reception conditions

Item ‘ Description
$MailRule.To Recipient
$MailRule.From Sender
$MailRule.Subject Subject

For "cond," specify one of the following conditions:

Table 8-56. Mail reception conditions

Condition ‘ Description
$MailRule.Include Include
$MailRule.AtFirst Start with
$MailRule.AtLast End with
$MailRule.Equal Match
$MailRule.Regex Regular expression

Example: Receiving mails with "example.com” included in the sender and with "report"
included in the subject.

mail_rule_info =
(
(item = $MailRule.From, cond = $MailRule.Include, value = "example.com"),
(item = $MailRule.Subject, cond = $MailRule.Include, value = "report")

8.4.2 Receive Mail

| WinActor.MailReceive Preamble

105

get_method = Reception type,
no_receiver_mail = Operation in case of no mails,
get_mail_num = Variable name to receive the result

This is to receive mails.

For "get_method," specify one of the following reception types.

Table 8-57. Reception types for Receive Mail

Reception type ‘ Description
$MailReceive.OneByOne Receives one by one
$MailReceive.GetAll Receives all mails
$MailReceive.NumOnly Receives the number of mails

For "no_receiver_mail," specify one of the following operations.

Table 8-58. Operations in case of no mails for Receive Mail

Operation in case of no mails ‘ Description
$MailReceive.Wait Waits until mails can be received
$MailReceive.Error Raises an error
$MailReceive.MailNum Returns the number of mails (zero)

The number of received mails is returned to the variable specified in "get_mail_num."

If WinActor.MailReceive appears in an assignment or expression, the result will not be stored
in the variable. Specifying the variable to receive the result is optional. When the assign
statement or expression appears in the WSS output of a flowchart, the variable to set in the
property for the return value is omitted.

8.4.3 Select Mail

WinActor.MailSelect Preamble
(
select_type = Mail selection type,
line_num = Variable name to store the line number of the selected mail,
not_mail_error_return = true or false

106

This is to select a received mail.

For "select_type," specify one of the following mail selection types.

Table 8-59. Mail selection types for Select Mail

Mail selection type ‘ Description
$MailSelect.Top Selects the first mail
$MailSelect.NoProcessedTop Selects the first unprocessed mail
$MailSelect.ProcessedTop Selects the first processed mail
$MailSelect.Next Selects the next mail
$MailSelect.NextNoProcessed Selects the next unprocessed mail
$MailSelect.NextProcessed Selects the next processed mail

The line number of the selected mail is returned to the variable specified in "line_num."

If WinActor.MailSelect appears in an assignment or expression, the result will not be stored
in the variable. Specifying the "line_num" variable is optional. When the assign statement or
expression appears in the WSS output of a flowchart, the variable to set in the property for
the line number is omitted.

8.4.4 Change Mail State

WinActor.MailStatusChg Preamble

(
$MailStatusChg.Processed or $MailStatusChg.NoProcessed

)

Specify $MailStatusChg.Processed or $MailStatusChg.NoProcessed in the argument.
It means to change the state to "Processed" or "Unprocessed," respectively.

No value is returned.

8.4.5 Synchronize Mail Folder

| WinActor.MailSync Preamble ()

This is to synchronize the Mail pane with the mail folder.
See "WinActor Mail Reception Scenario Creation Manual" for details.
There is no argument.

No value is returned.

107

8.4.6 Delete Processed Mail

WinActor.MailRemoveProcessed Preamble

(

deleted_mail_num = Variable name to receive the result

The number of deleted mails is returned to the variable specified in "deleted_mail_num."

If WinActor.MailRemoveProcessed appears in an assignment or expression, the result will
not be stored in the variable. Specifying the variable to receive the result is optional. When
the assign statement or expression appears in the WSS output of a flowchart, the variable to
set in the property for the return value is omitted.

8.4.7 Delete Mail

| WinActor.MailRemove Preamble ()

This is to delete a selected mail.
There is no argument.

No value is returned.

8.4.8 Copy Mail Information

WinActor.MailCopyClip Preamble
(Argument)

This is to copy information of a selected mail to the clipboard.

No value is returned.

Specify one of the following in the argument.

Table 8-60. Arguments for Copy Mail Information

Argument ‘ Description
$MailCopyClip.UniquelD Unique ID
$MailCopyClip.FolderName Folder name
$MailCopyClip.Status State (unprocessed/processed)
$MailCopyClip.SendDate Sent date
$MailCopyClip.From Sender

108

Argument ‘ Description
$MailCopyClip.Subject Subject
$MailCopyClip.Body Body
$MailCopyClip.NumberOfAttached Number of attached files

8.4.9 Get Attached Filename

WinActor.MailAttachName Preamble
(

attach_file_number = Attached file number,
attach_file_name = Variable name to receive the filename

The attached filename is returned to the variable specified in "attach_file_name."

If WinActor.MailAttachName appears in an assignment or expression, the result will not be
stored in the variable. Specifying the variable to receive the filename is optional. When the
assign statement or expression appears in the WSS output of a flowchart, the variable to set
in the property for the filename is omitted.

8.4.10 Get Mail Information

WinActor.MailGetinfo Preamble
(

uid = Variable name to receive the unique ID,

dir = Variable name to receive the folder name,

stat = Variable name to receive the mail state (unprocessed/processed),
send_date = Variable name to receive the sent date,

from = Variable name to receive the sender,

to = Variable name to receive the recipient,

cc = Variable name to receive the CC recipient,

subject = Variable name to receive the subject,

message = Variable name to receive the body,
attachment = Variable name to receive the number of attached files

This is to get information of a received mail.

For items that do not require information, specify the anonymous identifier " (two single
quotes) as a variable name or omit the item.

The information is returned to the specified variables. The result of the whole operation is not
returned.

109

8.4.11 Import Mail Reception Settings

WinActor.MailReceivelmport Preamble

(

File path or variable name that stores a file path

This is to import the mail reception settings.

No value is returned.

8.4.12 Gmail Reception Settings

WinActor.GmailReceiveSet Preamble

(

mail_rule_info = Mail reception conditions,

conn_time = Connection timeout, /I Milliseconds 10000, etc. (10 seconds)
cmd_time = Reception timeout, I/ Milliseconds 10000, etc. (10 seconds)
mail_input = String or variable, I/ Mail folder

attach_save = true / false, /I Whether to save attached files

extention_not_save = true / false, // Space-separated, valid when extention_not_save is true
except_extension ="*.exe *.bat *.vbs *.msi *.jar",
/I Specify attached file extensions not to save

This is to configure Gmail reception settings.
The minimum value for the connection timeout and the reception timeout is 100, and
the maximum value is 3,600,000 milliseconds.

No value is returned.

e Mail reception conditions “mail_rule_info”

Write the conditions for receiving mails. You can write multiple conditions by separating them
with commas. Only mails that meet all the conditions will be received.

The syntax of the condition is as follows:
(item = ltem, cond = Condition, value = Value)

or

(item = ltem, cond = Condition, var = Variable name)

For "item," specify one of the following items.

110

Table 8-61 Items for mail reception conditions

Item ‘ Description
$GmailRule.To Recipient
$GmailRule.From Sender
$GmailRule.Subject Subject

For "cond," specify one of the following conditions:

Table 8-62 Mail reception conditions

Condition ‘ Description
$GmailRule.Include Include
$GmailRule.AtFirst Start with
$GmailRule.AtLast End with
$GmailRule.Equal Match
$GmailRule.Regex Regular expression

Example: Receiving mails with a string "example.com" included in the sender and with a
string "report" included in the subject.

mail_rule_info =
(
(item = $MailRule.From, cond = $MailRule.Include, value = "example.com"),
(item = $MailRule.Subject, cond = $MailRule.Include, value = "report")

8.4.13 Receive Gmail

WinActor.GmailReceive Preamble
(
get_method = Reception type,
no_receiver_mail = Operation in case of no mails,
get_mail_num = Variable name to receive the result

This is to receive mails via Gmail.

For "get_method," specify one of the following reception types.

111

Table 8-63 Reception types for Receive Gmail

Reception type ‘ Description
$GmailReceive.OneByOne Receives one by one
$GmailReceive.GetAll Receives all mails
$GmailReceive.NumOnly Receives the number of mails

For "no_receiver_mail," specify one of the following operations.

Table 8-64 Operations in case of no mails for Receive Gmail

Operation in case of no mails ‘ Description
$GmailReceive.Wait Waits until mails can be received
$GmailReceive.Error Raises an error
$GmailReceive.MailNum Returns the number of mails (zero)

The number of received mails is returned to the variable specified in "get_mail_num."

If WinActor.GmailReceive appears in an assignment or an expression, the result will not be
stored in the variable. Specifying the variable to receive the result is optional. When the
assign statement or expression appears in the WSS output of a flowchart, the variable to set
in the property for the return value is omitted.

8.4.14 Gmail Send Settings

WinActor.GmailSendSet Preamble
(

conn_time = Connection timeout, [/ Milliseconds 10000, etc. (10 seconds)
cmd_time = Reception timeout, I/ Milliseconds 10000, etc. (10 seconds)

This is to configure the Gmail send settings.

The minimum value for the connection and the reception timeout is 100, and the maximum
value is 3,600,000 milliseconds.

No value is returned.

8.4.15 Send Gmail

WinActor.GmailSend Preamble
(

recipient_name = String or variable, I/ Recipient’s name
recipient_address = String or variable, // Recipient's mail address

112

subject = String or variable, [/ Subject of the mail
body = String or variable, /I Mail body

This is to send a mail via Gmail.

No value is returned.

8.4.16 HTTP

WinActor.Http Preamble
(

method = Method,

url = Server address URL string or variable name,

server_timeout = Connection timeout, /I In milliseconds
res_timeout = Response timeout, /I In milliseconds
req_header = (Key = value or variable name, ...),

req_body_file = File path string to store the request details or variable name,
req_body = (Key<Type> = value or variable name, ...),

req_use_file =true/false, // When true is specified, req_body_file is adopted.
res_header = (Key = destination variable name, ...),

res_body file = Destination file path string or variable name,

res_body = (Key = destination variable name, ...)

res_use_file =true/false, /I When true is specified, res_body_file is adopted.
status_code = Variable name to receive the status code

For "method," specify one of the following:

Table 8-65. Methods for HTTP

Method

SHTTP.Get

$SHTTP.Put

$HTTP.Post
$HTTP.Delete
$HTTP.Patch

Specify either "req_body_file" or "req_body." If both are specified, "req_body_file" will be
taken when “req_use_file” is true, and .”req_body” when false. If both are specified and
“req_use_file” is omitted, “req_body _file” will be taken.

113

Specify either "res_body file" or "res_body." If both are specified, "res_body_file" will be
taken when “res_use_file” is true, and “res_body” when false.. If both are specified and
“res_use_file” is omitted, “res_body_file” will be taken.

If SHTTP.Get is specified in the method, "req_body _file" and "req_body" will be ignored.

The valid arguments (o) and ignored arguments (x) for each method are as follows.
Table 8-66. Methods and arguments for HTTP

Argument Method Description
Get Put Post | Delete | Patch

req_header o o o o o Key = value or variable name

req_body file x o o o o File path string to store the request
details or variable name

req_body x o o o o Key<type> = value or variable name
Converted to JSON object and sent

res_header o o o o o Key = destination variable name

res_body_file o) o o o o Destination file path string or variable
name

res_body o o o o o Key = destination variable name

The result will be in JSON format.

For "Type," specify one of the following:

Table 8-67. Types for HTTP

Type ‘ Description
integer Integer
float Decimal
string String
object Object
array Array
boolean Boolean
null Null

The status code is returned to the variable specified in "status_code."

If WinActor.Http appears in an assignment or expression, the result will not be stored in the
variable. Specifying the variable to receive the status code is optional. When the assign
statement or expression appears in the WSS output of a flowchart, the variable to set in the
property for the return value is omitted.

For details and notes, see "HTTP" in "WinActor User Library Sample Manual."

114

8.4.17 HTTP (Advanced)

(

WinActor.Http2 Preamble

method = Method,

url = Server address URL string or variable name,

proxy_mode = true/false, // Whether to use the proxy server set in option window
response_timeout = Response timeout, // in milliseconds

auth = true / false, //\whether to use the BASIC authentication
auth_user = User name string or variable name,
auth_pass = Password string or variable name,

req_header = Request header in JSON-format string or variable name,

req_header_file = Path name for the file that stores the request header or variable name,
req_param_multipart = true / false, // Whether to send parameters in multipart

req_param = Parameters in JSON-format string or variable name,

req_param_file = Path name for the file that stores the parameters or variable name,

req_body = Request body string,

req_body_file = Path name for the file that stores the request body,

req_cookie = Request header cookie in JSON-format string or variable name,

req_cookie_file = Path name for the file that stores the request header cookie or variable name,
req_do_not_base64_attrs = true / false,

/I Whether not to base64 encode the ‘Filename’ and ‘name’ attributes when uploading a file

reqg_fileupload_file = Path name for the file that stores the upload files setting or variable name,
fileupload_info = Upload files list,

res_header = Variable name to receive response header,

res_header_file = Path name for the file to receive response header or variable name,
res_header_filetype = Response header format,

res_body = Variable name to receive response body,

res_body _file = Path name for the file to receive response body or variable name,
res_multipartdata_split = true / false, // Whether to split multipart data

res_cookie = Variable name to receive response cookie,

res_cookie_file = Path name for the file to receive response cookie or variable name,
res_cookie_filetype = Response cookie format,

http_version = Variable name to receive the HTTP version,

reason_phrase = Variable name to receive the reason phrase,

status_code = Variable name to receive the status code

Since many parameters exist, not selected or omitted parameters in .wss7 file are also output

as

comments on the file.

Specify one of the followings for “Method.”

115

Table 8-68. Method of HTTP2

Method

SHTTP.Get
$SHTTP.Put
SHTTP.Post
$HTTP.Delete
$HTTP.Patch
$HTTP.Head

The “response_timeout” is optional. The default value is 10000, which means 10 seconds.

When ‘false’ is set for “auth,” both “auth_user” and “auth_password” are optional.

For following items in each row, the parameter on either left or right side should be specified.
If the parameters on both sides are specified, the right side one is adopted.
When the parameters on both sides in the row are not necessary for the request, they are

optional.
Table 8-69. Req arguments of HTTP2
From variable or value ‘ From file
req_header req_header file
req_param req_param_file
req_cookie req_cookie_file
req_body req_body_file

For following items in each row, the parameter on either left or right side should be specified
to store the corresponding element in the response. If the parameters on both sides are
specified, the right side one is adopted.

When the corresponding element is not necessary to store, parameters on both sides are

optional.
Table 8-70. Res arguments of HTTP2
To variable ‘ To file
res_header res_header _file
res_cookie res_cookie_file
res_body res_body file

For “res_header filetype” and “res_cookie_filetype,” specify $HTTP2.RawFormat or
$HTTP2.JSONFormat.

116

These parameters are optional. The default value for them is SHTTP2.RawFormat.

Table 8-71. Response format of HTTP2

Response format ‘ Description
$HTTP2.RawFormat Separated by new lines
$SHTTP2.JSONFormat JSON format

For “req_do_not_base64_attrs,” specify true or false.

Specify true to not encode the “Filename” and “name” attributes in base64, or false to encode
them in base64, when sending them with the file to upload. The “req_do_not_base64_attrs”
is optional. The default value is false on the scenario created with WinActor 7.6.0 or earlier,
and true on the scenario created with WinActor 7.6.1 or later.

For the upload files, specify either “fileupload_info” or “req_fileupload_file.”
If both of them are specified, “req_fileupload_file” is adopted.

The syntax of “fileupload_info” is as follows. List triplets of a flename, a form name and a
content type for all the files to upload.

fileupload_info = (

(flename = Path of a file or variable name,
name = String or variable name,
content_type = String or variable name),

(flename = Path of a file or variable name,
name = String or variable name,
content_type = String or variable name),

An example of fileupload_info

fileupload_info = (
(flename = @"c:\tmp\file.txt", name = "file.txt", content_type = "text/plain"),
(filename = @"c:\tmp\file2.txt", name = "file2.txt", content_type = ct),
(filename = htmlfile, name = name, content_type = "text/html"),
(filename = file, name = name, content_type = ct)

“http_version” and “reason_phrase” are optional.

117

Effective arguments, which is shown as ‘O’, and ignored arguments, which is shown as ‘x’,
for each method are listed below.

Table 8-72. Methods and arguments of HTTP2
Argument ‘ Methods

Get Put Post Delete | Patch Head
O O O
O O O

O1 O1

O
O

req_header

0|0
O
O

req_header file

X
O
[N

X

X

req_param_multipart

<Q
Q
Q

req_param

0|0

req_param_file

X

req_body

X
X

req_body file

auth

auth_user

auth_pass

req_cookie

O|0]0|0|0|0|0|0]|0

O|0|0|0|0O
O|0|0|0|0O

req_cookie_file

X
X
X

req_do_not_base64 _attrs

fileupload_info

res_header _filetype

res_header

res_header_file

res_body

res_body _file

res_multipartdata_split

res_cookie_filetype

O|0]O0|O0|0 0|0 |0 X

res_cookie

X
o|o|o|o|ojo|o|o|o|o|o|o|o|o|0|0|2(Q|Q
o|o|o|o|ojo|o|o|o|o|o|o|o|o|o|0|2(Q|Q
o|o|o|o|ojo|o|ojo|o|o|o|o|o|o|0|2(Q|Q

X

O|0|0|0]0|0|0]0]|0
O|0|0|0|0|0|0]0]|0

res_cookie_file O
1. For the method ‘Put,’ ‘Post,’ or ‘Patch,” you can specify either the request body or the
parameters, but not both.

The status code is returned to the variable specified in "status_code."

118

If WinActor.Http2 appears in an assignment or expression, the result will not be stored in the
variable. Specifying the variable to receive the status code is optional. When the assign
statement or expression appears in the WSS output of a flowchart, the variable to set in the
property for the return value is omitted.

For details and notes, see the subsection “HTTP (advanced)” in the "User Library Sample
Manual.”

8.4.18 Write JSON

WinActor.JsonWrite Preamble
(
json_table = JSON value,
write_file = File path,
variable = Variable name to receive the result
use_file =true/false // When true is specified, write_file will be adopted.

)

"JSON value" is expressed as a list in which "key<type> = expression" is separated by
comma.

"Type" is one of the following. If "Type" is string, object, array or null, specify a value as a
string.

If "Type" is Boolean, specify true or false.

Table 8-73. Types for JSON value

Type ‘ Description
integer Integer
float Decimal
string String
object Object
array Array
boolean Boolean
null Null

The result is stored in the file specified in "write_file" or the variable specified in "variable."

Specify either "write_file" or "variable." If both are specified, "write_file" will be taken when
“‘use_file” is true, .and “variable” when “use_file” is false. If both are specified and “use_file”
is omitted, "write_file" will be taken.

119

If WinActor.JsonWrite appears in an assignment or expression, the result will not be stored
in the variable. Specifying the variable to receive the result is optional. When the assign
statement or expression appears in the WSS output of a flowchart, the variable to set in the
property for the return value is omitted.

Example:

i=128;
ret = WinActor.JsonWrite [name = "Write JSON", comment = ""]
(
json_table = (key_s<string> = "strvalue",
key_i<integer> =512,
key_v<integer> =i,

key_n<null> ="

key_b<boolean> = true,
key_a<array> "T,2,3]",
key_o<object> ="{x:12}")

The value of variable "ret" after execution:
{

"key_s" : "strvalue",

"key_i": 512,

"key_ V" : 128,

"key_n": null,

"key_b" : true,
"key_a":[1,2,3],
"key_o" : {

"x":12

8.4.19 Read JSON

This is to read JSON key values from a file or a variable that stores a JSON object.

WinActor.JsonRead Preamble
(
json_table = (Key = variable name, ...),
read_file = File path string or variable name that stores a file path string,
variable = variable name
use file = true/false // When true is specified, read_file will be adopted.

120

Values are read from the file specified in "read_file" or the JSON object stored in the variable
specified in "variable."

Specify either "read_file" or "variable." If both are specified, "read_file" will be taken when
“use_file” is true, and “variable” when false. If both are specified and “use_file” is omitted,
"read_file" will be taken.

For "json_table," specify a key to read a value from the JSON object and a variable name to
store the read value.

The types of JSON values are not required.

8.4.20 Other JSON libraries

JSON libraries other than "Write JSON" and "Read JSON" are implemented with the Run
Script nodes. See the "Annotation" tab of the property of each Run Script node for details.

8.4.21 Socket

WinActor.Socket Preamble
(

identifier = variable, /I connection identifier
connect = true / false, /I use connect function or not
host = String or variable, /I connection destination
port = Integer or variable, // port number 0 - 65535
connect_timeout = Integer or variable, /I connection timeout by millisecond

/I integer greater than or equal to -1
connect_exception_name = String or variable, /I exception name of connection retry
send = true / false, /I use send function or not
send_timeout = Integer or variable, /I send timeout by millisecond,

Il integer greater than or equal to 0

send_data_type_file = true / false, /l data source is a file or not
send_data_file = String or variable, /I file path of data source

send_data_value = String or variable, [/ send data
send_conv_text = true / false, /I use text conversion or not
send_input_char = input character encoding,
send_input_newline = input newline code,
send_output_char = output character encoding,
send_output_newline = output newline code,
send_conv_bin = true / false, /I convert (base64) to binary data or not
send_buffer_size = Integer or variable, I/ send buffer size
// integer greater than or equal to 0

send_data_size = Variable, /I variable that stores the send data size

121

send_shutdown = true / false, /I shutdown sending or not
send_exception_name = String or variable, /| exception name of send retry

receive = true / false, /I use receive function or not
receive_timeout = Integer or variable, /I receive timeout by millisecond

/l integer greater than or equal to 0
receive_data_type_file = true / false, /Il received data is stored in file or not
receive_data_file = String or variable, // file path to store the received data
receive_data_variable = Variable, // variable to store the received data
receive_conv_text = true / false, /I use text conversion or not

receive_input_char = input character encoding,
receive_input_newline =input newline code,
receive_output_char = output character encoding,
receive_output_newline = output newline code,
receive_conv_bin = true / false, /I convert binary data (to base64) or not
receive_buffer_size = Integer or variable, |/ receive buffer size

/l integer greater than or equal to 0
receive_end_condition = condition to end reception,
receive_data_size = Integer or variable, I/ receive data size

/l integer greater than or equal to 0
received_data_size = Variable, / variable to store the received size
receive_shutdown = true / false, /I shutdown receiving or not
receive_exception_name = String or variable, I/ exception name of receive retry

disconnect = true / false, /I use disconnect function or not
disconnect_timeout = String or variable, /I disconnection timeout by millisecond

/l integer greater than or equal to -1
disconnect_exception_name = String or variable /I exception name of disconnection retry

)

” ” W

Set functions to use among the “connect,” “send,” “receive,” and “disconnect.”

Unused functions can also be set, and those settings are stored. When setting a variable for
a setting item of an unused function, the variable still needs to be declared. For example,
although “send = false, send_data_type_file = true, send_data_value = variable” means that
the send function is unused and the send data is obtained from a file, the variable still needs
to be declared.

When the source of the send data is a variable or a string value, which means
"send_data_type_file = false," the only character encoding that can be set to the
‘send_input_char’ is $SOCKET.CharASCII.

When the destination of the received data is a variable, which means "receive_data_type_file
= false," the only character encoding that can be set to the ‘receive_output_char’ is
$SOCKET.CharASCII.

122

The connection identifier ‘identifier’ is required to set, but other items are optional. The default
values are listed on the table below.

Table 8-74. Default values

Argument type ‘ Default value
true / false false
String or variable Empty string
Variable Anonymous identifier
Port number 0
Timeout 10,000 (ms)
Input/output buffer size 8,192
Input/output character encoding $SOCKET.CharASCII
Input/output newline code $SOCKET.NewLineCRLF
Condition to end reception $SOCKET.EndFin
Receive data size 0
Exception name of retry $SOCKET.ActionException

However, arguments are required for some items on some conditions.

Table 8-75. ltems that require arguments

Item that requires an argument Condition to require an argument
host connect = true
port connect = true
send_data_size send = true
received_data_size receive = true
receive_data_size Receive_end_condition = $SOCKET.EndSize

When “send_data_type_file = true” is set, the file path specified for “send_data_file” by string
or via variable indicates the file that is the source of send data. When “send_data_type_file
= false” is set, the value specified for “send_data_value” by string or via variable is the send
data.

When “receive_data_type_file = true” is set, the file path specified for “receive_data_file” by
string or via variable indicates the file that is the destination of received data. When
“receive_data_type_file = false” is set, the variable specified for “receive_data_variable” is
the destination of received data.

123

set both true.

Predefined constant

$SOCKET.CharASClI

“send_conv_bin” cannot be set

The character encodings that can be set for “send_input_char,
“receive_input_char,” and “receive_output_char” are predefined constants listed on the table
below, IANA character set names, and code page numbers. A code page number is specified
with an integer from 0 to 65,536. When a character encoding specified by IANA character set
or code page number is not supported on the running environment, it is warned and
$SOCKET.CharASCII is regarded as the specified encoding.

Table 8-76. Character encodings

The send text conversion “send_conv_text” and the send binary data conversion
both true. Also, the receive text conversion
“receive_conv_text” and the receive binary data conversion “receive_conv_bin” cannot be

send_output_char,”

RENENE

$SOCKET.CharUTF-16LE

little endian, without BOM

$SOCKET.CharUTF-16LE-BOM

little endian, with BOM

$SOCKET.CharUTF-16BE

big endian, without BOM

$SOCKET.CharUTF-16BE-BOM

big endian, with BOM

$SOCKET.CharUTF-8

without BOM

$SOCKET.CharUTF-8-BOM

with BOM

$SOCKET.CharShift-JIS

Code page 932

$SOCKET.CharEUC-JP

Code page 51932

the table below.

The newline codes that can be set
“receive_input_newline,” and “receive_output_newline” are predefined constants listed on

for “send_input_newline,” “send_output_newline”,

Table 8-77. Newline codes

Predefined constant Remarks
$SOCKET.NewLineCRLF
$SOCKET.NewLineCR
$SOCKET.NewLineLF
$SOCKET.NewLineNONE If this is set for “send_output_newline,” or

“receive_output_newline,” the newline code at the
end of data is removed before sending or storing.

The conditions to end reception that can be set for “receive_end_condition” are predefined
constants listed on the table below.

124

Table 8-78. Conditions to end reception

Predefined constant ‘ Remarks
$SOCKET.EndFin until FIN is received
$SOCKET.EndSize until the number of octets specified for

“receive_data_size” is attained
$SOCKET.EndEmpty until no readable data remains

The retry exception names that can be set for ‘connect_exception_name,’
‘send_exception_name,’ ‘receive_exception_name,” and ‘disconnect_exception_name’ are
$SOCKET. ActionException and other strings of exception names. When
$SOCKET.ActionException is specified, “77 7 < 3 »f3|#\” (Japanese) or “ActionException”
(English) is used depending on the language setting at the time of loading the WSS scenario.

If an empty string is set as an exception name, no exception is raised and the scenario
continues.

125

8.5 Libraries not listed in the adapter actions

Libraries not described in the adapter actions are implemented with the Run Script nodes or
subroutines.

These libraries can be used by placing them in WSS-enabled scenarios in WinActor.

By saving the created WSS-enabled scenario in a file, these libraries will be saved in wss7
and uss7 files.

126

9. Notes on restoration of expressions

In the WinActor scenarios loaded from the WSS, translated expressions may include some
additional working variables and nodes. Saving such a scenario back to the WSS, original
expressions were divided and became ugly to read through

To mitigate this problem, mechanisms to remove working variables and additional nodes and
to restore expressions to the near original state have been introduced.

However, if a working variable is edited and reused by a user on the “Flowchart” area of
WinActor, the expressions restored on the WSS may look far different from the expressions
the user intends. Therefore, the working variables that meet any of following conditions are
left intact on the restored WSS.

e Conditions to leave the working variable or the additional node intact

o A node which refers to the working variable is added.
e The working variable is newly referred to read a value.
o Referrer: All inputs where “Value or variable”, or “Variable” is required.
e Anode to assign something to the working variable is added.
e The working variable is newly set to the destination of assigning a value
¢ Destination: the destination variable of the following return of a node.
e the returned variable $...$ from VB in the “Run Script” node.
e the return value of the “Call Subroutine” node.
e the return value of the “Exit Subroutine” node.
e the return value of the “Call Scenario File” node.
e the return value of the “Exit Scenario” node.

o Asticky note is attached to the node which is added at the time of loading the
WSS.

e Abreakpoint is set at the node which is added at the time of loading the WSS.

e The working variable set as a local variable in the “Call Subroutine” node is
assigned an initial value or a variable in the property of the node.

¢ The working variable is deleted from the “Local variable list (variables to restore
the initial value at the end)” settings in the property of the “Subroutine Group”
node.

o The working variable is specified in the return setting of the “Call Scenario File”
node.

127

e Conditions to leave working variables intact without user modifications

The working variable occurred in the “conditional expression” of the “Loop
condition” of the “while” or the “dowhile” statement.

The working variable occurred in the “End” expression of the “Loop condition” of
the “while” or the “dowhile” statement.

If the “conditional expression” of the “Case statement” in the “Switch statement”
has working variables and has been converted to the “IF statement” (the
“Decision” node on WinActor), the “Switch statement” cannot be restored.

The working variable occurred in an anonymous subroutine.

If a working variable used in a called scenario is specified in the “Variables
inherited from the destination” of the “Call Scenario File” node, it may not be
inherited when the working variable is deleted in the restoration process.

The working variables which was in the “Floating part” of the original WSS
remains if the part is converted to a subroutine on the scenario of WinActor.

128

o Programming Language

R W| nACtO I’ WinActor Scenario Script

NTT ADVANCED TECHNOLOGY CORPORATION
Copyright © 2013-2025 NTT, Inc. & NTT ADVANCED TECHNOLOGY CORPORATION

This document is protected under copyright law. It is forbidden to duplicate or copy any part or all of this document

without prior consent.

The contents of this document are subject to change without notice.

WA7-U-20250905

	Trademarks
	• WinActor is a registered trademark of NTT ADVANCED TECHNOLOGY CORPORATION.
	• Microsoft, Windows*1, Internet Explorer, Excel, and VBScript*2 are trademarks or registered trademarks of Microsoft Corporation in the United States and other countries.
	• The names of other companies and products are trademarks or registered trademarks of their respective companies.

	About this document
	Notes on this manual
	• The copyright notice "Copyright © 2013-2025 NTT, Inc. & NTT ADVANCED TECHNOLOGY CORPORATION" attached to this manual and the provided software cannot be changed or deleted. The copyright of this manual belongs to NTT, Inc. and NTT ADVANCED TECHNOLOG...
	• The descriptions in this manual assume that users understand Windows operations and functions. For information that is not described in this manual, see the documents provided by Microsoft.

	Contents
	1. Introduction
	2. Terminology
	3. Symbols and symbol strings
	4. Data types
	4.1 Comment
	4.2 Number
	4.3 Boolean
	4.4 Identifier
	• Naming conventions for identifiers
	• Reserved identifier
	• Special identifier
	• Predefined constant identifier
	• Action name

	4.5 String
	• String literals
	• Naming conventions for strings

	4.6 Structure
	4.6.1 Preamble
	• How to write a preamble
	• Example of a preamble

	4.6.2 Adapter parameter list
	• How to write an adapter parameter list
	• Examples of adapter parameter lists

	4.6.3 Verbatim tuple
	• How to write a verbatim tuple
	• Example of verbatim tuples

	4.6.4 Const tuple
	• How to write a constant tuple

	5. Scenario
	5.1 Scenario composition
	5.2 Variable part
	• Syntax
	• Description
	5.2.1 Variable declaration
	• Syntax
	• Description

	5.3 Window match rule part
	• Syntax
	• Description
	5.3.1 window_title const tuple
	• Syntax
	• Predefined constants that can be specified in "rule"

	5.3.2 window_class const tuple
	• Syntax
	• Predefined constants that can be specified in "rule"

	5.3.3 process_name const tuple
	• Syntax
	• Predefined constants that can be specified in "rule"

	5.3.4 window_size const tuple
	• Syntax
	• Predefined constants that can be specified in "rule"

	5.3.5 Example of the window match rule part

	5.4 Main part
	• Syntax
	• Description

	5.5 Floating part
	• Syntax
	• Description
	• Example of the floating part

	5.6 Subroutine part
	• Syntax
	• Description

	5.7 WinWatcher part
	• Syntax
	• WinWatcher actions
	• Description
	• Example of the WinWatcher part

	5.8 EventWatcher part
	• Syntax
	• Event trigger condition
	• Event trigger condition parameters
	• Call action parameters
	• Description
	• Example of the EventWatcher part

	5.9 Breakpoint information part
	• Syntax
	• Description
	• Example of the breakpoint information part

	5.10 Scenario information part
	• Syntax
	• Description
	• Example of the scenario information part

	5.11 Image part
	• Syntax
	• Description
	5.11.1 Image declaration
	• Syntax
	• Attributes

	5.11.2 Example of image declarations

	5.12 Flowchart information part
	• Syntax
	• Description
	• Example of the flowchart information part

	5.13 Word dictionary part
	• Syntax
	• Description
	• Example of the word dictionary part

	6. Statement
	6.1 Description
	6.2 Group statement
	• Syntax

	6.3 if statement
	• Syntax

	6.4 while statement
	• Syntax
	6.4.1 Loop condition
	• Syntax

	6.5 dowhile statement
	• Syntax
	6.5.1 Loop condition

	6.6 switch statement
	• Syntax
	6.6.1 Case statement
	• Syntax

	6.6.2 Default statement
	• Syntax

	6.7 try statement
	• Syntax
	6.7.1 catch statement
	• Syntax

	6.8 return statement
	• Syntax

	6.9 scenario return statement
	• Syntax

	6.10 break statement
	• Syntax

	6.11 continue statement
	• Syntax

	6.12 Call subroutine statement
	• Syntax

	6.13 Call scenario statement
	• Syntax

	6.14 Adapter action statement
	• Syntax

	6.15 Assignment statement
	• Syntax

	6.16 Four arithmetic operations

	7. Expression
	7.1 Factor
	• Syntax

	7.2 Constant expression
	7.2.1 Binary operators for constant expressions
	7.2.2 Constant factors
	• Syntax

	7.3 Conditional expression
	7.3.1 Binary operators for conditional expressions
	7.3.2 Conditional expression factors
	• Syntax

	8. Adapter actions
	• Syntax
	8.1 Automatic recording
	8.1.1 Event recording – Click
	8.1.2 Event recording – Set Text
	8.1.3 Event recording – Select Item in List
	8.1.4 Event recording – Select Tab
	8.1.5 Event recording – Emulate
	8.1.6 Event recording – Get String
	8.1.7 Event recording – Get Item in List
	8.1.8 Event recording – Get Check State
	8.1.9 Event recording – Get Enable/Disable State
	8.1.10 Event recording – Get All Items in List
	8.1.11 UIAutomation
	8.1.12 UIAutomation library
	8.1.13 UIAutomation dump

	8.2 Automatic recording (IE)
	8.2.1 IE mode recording – Click
	8.2.2 IE mode recording – Set Text
	8.2.3 IE mode recording – Select Item in List
	8.2.4 IE mode recording – Get String
	8.2.5 IE mode recording – Get Item in List
	8.2.6 IE mode recording – Get Check State
	8.2.7 IE mode recording – Get Enable/Disable State
	8.2.8 IE mode recording – Get Value in Table
	8.2.9 IE mode recording – Get All Items in List

	8.3 Action, User, Variable
	8.3.1 Image Matching
	8.3.2 Contour Matching
	8.3.3 OCR Matching
	8.3.4 Wait for Window Status
	8.3.5 Wait for Time
	8.3.6 Send Text
	8.3.7 Execute Command
	8.3.8 Run Script
	8.3.9 Run Python
	8.3.10 Excel Operation
	8.3.11 Clipboard
	8.3.12 Set To Clipboard
	8.3.13 Get From Clipboard
	8.3.14 Waiting Dialog
	8.3.15 Input Dialog
	8.3.16 Selection Dialog
	8.3.17 Sound (Buzzer)
	8.3.18 Sound (WAVE file)
	8.3.19 Set Variable Value
	8.3.20 Copy Variable Value
	8.3.21 Get Date and Time
	8.3.22 Get Username
	8.3.23 Four Arithmetic Operations
	8.3.24 Count Up
	8.3.25 Full/Half-Width Conversion
	8.3.26 Watch Events
	8.3.27 Register EventWatcher
	8.3.28 Cancel EventWatcher
	8.3.29 Ignore Events

	8.4 WinActor Mail, HTTP, JSON
	8.4.1 Mail Reception Settings
	• Mail reception conditions "mail_rule_info"

	8.4.2 Receive Mail
	8.4.3 Select Mail
	8.4.4 Change Mail State
	8.4.5 Synchronize Mail Folder
	8.4.6 Delete Processed Mail
	8.4.7 Delete Mail
	8.4.8 Copy Mail Information
	8.4.9 Get Attached Filename
	8.4.10 Get Mail Information
	8.4.11 Import Mail Reception Settings
	8.4.12 Gmail Reception Settings
	• Mail reception conditions “mail_rule_info”

	8.4.13 Receive Gmail
	8.4.14 Gmail Send Settings
	8.4.15 Send Gmail
	8.4.16 HTTP
	8.4.17 HTTP (Advanced)
	8.4.18 Write JSON
	8.4.19 Read JSON
	8.4.20 Other JSON libraries
	8.4.21 Socket

	8.5 Libraries not listed in the adapter actions

	9. Notes on restoration of expressions
	• Conditions to leave the working variable or the additional node intact
	• Conditions to leave working variables intact without user modifications

