

Copyright © 2013-2025 NTT, Inc. & NTT ADVANCED TECHNOLOGY CORPORATION

NTT ADVANCED TECHNOLOGY CORPORATION

Programming Language

WinActor Scenario Script

i

Trademarks
The names described below and other names of companies and products in this document

are trademarks or registered trademarks of their respective companies. The TM, ®, and ©

marks are omitted in this document.

 WinActor is a registered trademark of NTT ADVANCED TECHNOLOGY
CORPORATION.

 Microsoft, Windows*1, Internet Explorer, Excel, and VBScript*2 are trademarks
or registered trademarks of Microsoft Corporation in the United States and
other countries.

*1 The official name of Windows is Microsoft Windows Operating System.

*2 The official name of VBScript is Microsoft Visual Basic Scripting Edition.

 The names of other companies and products are trademarks or registered
trademarks of their respective companies.

ii

About this document
This "Programming Language WinActor Scenario Script" (hereinafter referred to as "this

manual") describes the programming language WinActor Scenario Script that can create

scenarios of WinActor.

This manual is intended for advanced programmers who can create scenarios of WinActor

programmatically rather than in a GUI.

Notes on this manual

 The copyright notice "Copyright © 2013-2025 NTT, Inc. & NTT ADVANCED
TECHNOLOGY CORPORATION" attached to this manual and the provided

software cannot be changed or deleted.
The copyright of this manual belongs to NTT, Inc. and NTT ADVANCED
TECHNOLOGY CORPORATION.

 The descriptions in this manual assume that users understand Windows
operations and functions. For information that is not described in this manual,
see the documents provided by Microsoft.

 This manual assumes that users are using Windows 10.

iii

Contents

1. Introduction .. 1

2. Terminology .. 2

3. Symbols and symbol strings ... 3

4. Data types .. 5

 Preamble ...20

 Adapter parameter list...21

 Verbatim tuple ...22

 Const tuple ..23

5. Scenario ... 24

 Variable declaration ..24

 window_title const tuple ..26

 window_class const tuple ...26

 process_name const tuple ..26

 window_size const tuple ...27

 Example of the window match rule part ..27

 Image declaration..38

 Example of image declarations ...38

6. Statement ... 41

iv

 Loop condition ...42

 Loop condition ...44

 Case statement ...44

 Default statement ..45

 catch statement ...45

7. Expression ... 50

 Binary operators for constant expressions ...52

 Constant factors ..52

 Binary operators for conditional expressions ...53

 Conditional expression factors..54

8. Adapter actions .. 55

 Event recording – Click ...55

 Event recording – Set Text ..57

 Event recording – Select Item in List ..57

 Event recording – Select Tab ..58

 Event recording – Emulate ...59

 Event recording – Get String ..61

 Event recording – Get Item in List ..62

 Event recording – Get Check State ..63

 Event recording – Get Enable/Disable State ..63

 Event recording – Get All Items in List ..64

 UIAutomation ..64

 UIAutomation library ...69

v

 UIAutomation dump ..71

 IE mode recording – Click ...72

 IE mode recording – Set Text ...73

 IE mode recording – Select Item in List ..74

 IE mode recording – Get String ..74

 IE mode recording – Get Item in List ..75

 IE mode recording – Get Check State ..75

 IE mode recording – Get Enable/Disable State76

 IE mode recording – Get Value in Table ...76

 IE mode recording – Get All Items in List ...77

 Image Matching ..78

 Contour Matching ..81

 OCR Matching ..83

 Wait for Window Status ...85

 Wait for Time ...86

 Send Text ..87

 Execute Command ...88

 Run Script ...89

 Run Python ...91

 Excel Operation ...93

 Clipboard ...94

 Set To Clipboard ..95

 Get From Clipboard...95

 Waiting Dialog ...95

 Input Dialog ...96

 Selection Dialog ..96

 Sound (Buzzer) ...97

 Sound (WAVE file)...97

 Set Variable Value ...97

 Copy Variable Value ..98

 Get Date and Time ..99

 Get Username .. 100

 Four Arithmetic Operations .. 100

 Count Up .. 101

 Full/Half-Width Conversion .. 101

 Watch Events ... 102

 Register EventWatcher .. 102

 Cancel EventWatcher .. 102

 Ignore Events ... 102

 Mail Reception Settings ... 103

 Receive Mail... 104

 Select Mail .. 105

 Change Mail State ... 106

vi

 Synchronize Mail Folder .. 106

 Delete Processed Mail ... 107

 Delete Mail ... 107

 Copy Mail Information .. 107

 Get Attached Filename .. 108

 Get Mail Information ... 108

 Import Mail Reception Settings .. 109

 Gmail Reception Settings .. 109

 Receive Gmail ... 110

 Gmail Send Settings ... 111

 Send Gmail ... 111

 HTTP ... 112

 HTTP (Advanced) ... 114

 Write JSON ... 118

 Read JSON ... 119

 Other JSON libraries .. 120

 Socket .. 120

9. Notes on restoration of expressions 126

1

1. Introduction

The programming language WinActor Scenario Script (hereinafter referred to as WSS) is a

procedural language for advanced programmers which is generated by converting a scenario

of WinActor Ver.7.

WSS is written to a text file with the filename extension of .wss7, which is called a wss7 file.

A uss7 file is also generated together with a wss7 file. A set of a uss7 file and a wss7 file can

be loaded into WinActor as a scenario.

For the procedure to save a scenario to uss7 and wss7 files or to load them into a scenario

with WinActor, see "WinActor Operation Manual."

WSS is a procedural language similar to C programming language, but it has less flexibility

because it is closely bound to the scenario of WinActor.

2

2. Terminology

The following terms are used in this manual. Details are described later.

Table 2-1. Terms

Term Remarks

Flowchart Points to a flowchart displayed in the

flowchart area of WinActor

Identifier

Identifier without a value

 Reserved identifier

Action name

Subroutine name

JSON type name Appears in JsonWrite adapter

Identifier with values

 Writable or read-only identifier

 Simple identifier

Number identifier

Special identifier

Compiler generated working identifier

Read-only identifier

 Predefined constant identifier

Non-variable used in the form of assignment Appears in preambles and const tuples

 Attribute identifier

String literal

 Simple string literal

Verbatim string literal

Block verbatim string literal

Structure

 Preamble

Adapter parameter list

Verbatim tuple

Const tuple

3

3. Symbols and symbol strings

The symbols and symbol strings that have meaning in WSS are listed below.

Table 3-1. Symbols and symbol strings

Symbol & symbol string Meaning Usage

(Left parenthesis

) Right parenthesis

[Left square bracket

] Right square bracket

{ Left curly bracket

} Right curly bracket

@(At left parenthesis Verbatim tuples

= Assignment

+
Addition One of four arithmetic operators, unary

operator, binary operator for constant

expressions

-
Subtraction One of four arithmetic operators, unary

operator, binary operator for constant

expressions

* Multiplication One of four arithmetic operators, binary

operator for constant expressions

/ Division One of four arithmetic operators, binary

operator for constant expressions

+^
Addition (Integer) One of four arithmetic operators, unary

operator, binary operator for constant

expressions

-^
Subtraction (Integer) One of four arithmetic operators, unary

operator, binary operator for constant

expressions

*^ Multiplication (Integer) One of four arithmetic operators, binary

operator for constant expressions

/^ Division (Integer) One of four arithmetic operators, binary

operator for constant expressions

== Equal to Binary operator for constant/conditional

expressions

!= Not equal to Binary operator for constant/conditional

expressions

>= Greater than or equal to Binary operator for constant/conditional

expressions

4

Symbol & symbol string Meaning Usage

> Greater than Binary operator for constant/conditional

expressions

< Less than Binary operator for constant/conditional

expressions

<= Less than or equal to Binary operator for constant/conditional

expressions

! Not Unary operator for constant/conditional

expression

&& And Binary operator for constant expressions

|| Or Binary operator for constant expressions

~
Regular expression match Binary operator for constant/conditional

expressions

!~
Regular expression unmatch Binary operator for constant/conditional

expressions

' Quote Identifiers

_ Underscore Identifiers

" Double quote Simple string literals

@"
Verbatim string literal start

symbol

@""" Block verbatim string literal

start symbol

@"""" Block verbatim string literal

start symbol

. Period

, Comma

; Semicolon

$ Dollar sign Number identifiers, special identifiers,

predefined constant identifiers

/* Start of comment

*/ End of comment

// Start of line comment

\ Escape sign See "Naming conventions for strings"

0 1 2 3 4
5 6 7 8 9

Number

5

4. Data types

 Comment

A part between /* and */ is skipped as a comment. It may span multiple lines.

A part from // to the end of the line is also skipped as a comment.

 Number

Numbers include integers and floats, and are represented in decimal notation.

Table 4-1. Numerical compositions

Number Composition

Integer Digit sequence

Float Digit sequence.Digit sequence

Digit sequence e+/- Digit sequence

Digit sequence.Digit sequence e+/- Digit sequence

"e" means "10 to the power of."

"e" may be a capital “E.”

"e" may be followed by "+" or "-."

"+" or "-" following "e" is optional.

The digit sequence on the right of "e" cannot be omitted.

The string literal of a number, which is embraced with half-width double quotes, may be used

as a number in expressions including constant expressions.

Full-width digits, “+,” “-,” “E,” “e,” and “.” may also be used in notation of the number.

The simple string literal of a digit sequence with commas as thousand separators, which is

embraced with half-width double quotes, is called a comma separated number. It may be

used as a number in expressions including constant expressions.

Full-width digits and commas may also be used in notation of the comma separated numbers.

A comma separated number is always interpreted as a float number even if it includes no

period, “e,” nor “E.” If it is used for an integer operand of an integer operation, a runtime error

occurs.

 Boolean

TRUE or FALSE. The strings TRUE and FALSE also work as Boolean.

6

 Identifier

Identifiers are global. Variables inside a subroutine should also be declared in the variable

part.

Reserved identifiers and predefined constant identifiers are case insensitive.

Other identifiers are case sensitive.

 Naming conventions for identifiers

Table 4-2. Naming conventions for identifiers

Naming convention Description

[_alphanumeric]+ An identifier consisting of only alphanumeric characters

and underscores. (Simple identifier)

'.*' An identifier that encloses any characters with single

quotes.

Used when creating a name with Japanese characters.

In particular, '' (consecutive two single quotes) can be used

as an anonymous identifier to omit a value and indicate to

use a default value.

$[_-alphanumeric.]+ An identifier that begins with $ and consists of

alphanumeric characters, underscores, hyphens, and

periods.

Used for special identifiers and predefined constant

identifiers.

$[numbers]+ Included above, but $[digit sequence] is called the number

identifier.

In the flowchart, it is treated as the name without $.

__work_[0-9][0-9][0-9][0-9] A name with four digits appended to __work_. This

identifier is generated by a compiler for its work.

The behavior is not guaranteed if changed.

Generated in the variable group __internal__.

In all naming conventions, the backslash character is used to escape the next character.

 Reserved identifier

The following identifiers are called reserved identifiers and are used in program syntax.

They are case insensitive.

The position where these can be used in the syntax is fixed.

It may be used as a simple identifier for a variable name in other places, but the behavior

7

when a reserved identifier is used as a subroutine name is not guaranteed.

Details of each reserved identifier are described later.

Table 4-3. Reserved identifiers

Name

var_group

const

window_rule

window_title

window_class

process_name

window_size

main

group

try

catch

callsub

return

call_scenario

scenario_return

dowhile

while

continue

break

count

start

end

counter

file

dbsource

user

password

table

template_and_data

json_object

switch

case

default

8

Name

if

then

else

winactor

sub

localvars

chkempty

floating

tag

rules

window_rule_ref

throw

error

subref

breakpoint_info

scenario_info

images

node_id_count

flow_divide_info

translation

true

false

istrue

isfalse

strcmp

strcasecmp

 Special identifier

Special identifiers can be used in expressions as special variables.

They should be written in all caps.

Some names include "-," and if a name matches a special identifier, "-" will be regarded as a

part of the special identifier and will not be interpreted as a subtraction symbol.

For available special identifiers, see “Special variables” in the "WinActor Operation Manual."

Read only special variables cannot be assigned.

9

 Predefined constant identifier

The following identifiers are called predefined constant identifiers.

They are case insensitive.

These are prepared to describe numbers or strings by name, such as an action mode.

Predefined constant identifiers are all read-only.

They can be used in expressions and constant expressions.

Table 4-4. Predefined constant identifiers

Name Value

$WIN32.WaitSettingOption "specified_option_info"

$WIN32.WaitSettingScenario "specified_scenario_info"

$WIN32.WaitSettingNode "specified_node"

$SelectTabWin32.index "index"

$SelectTabWin32.text "text"

$GetListWin32.index "index"

$GetListWin32.text "text"

$SelectListWin32.index "index"

$SelectListWin32.text "text"

$GetListIE8.index "index"

$GetListIE8.text "text"

$SelectListIE8.index "index"

$SelectListIE8.text "text"

$TimerWait.Sleep 1

$TimerWait.Until 2

$TimerWait.Check 3

$TimerWait.ScenarioInfoDateFormat "specified_scenario_info"

$TimerWait.OptionInfoDateFormat "specified_option_info"

$TimerWait.OptionInfoTimeZone "specified_option_info"

$TimerWait.DefaultTimeZone "default_os"

$Window.Front 1

$Window.Behind 2

$Window.Enable 3

$Window.Disable 4

$Window.Appear 5

$Window.Disappear 6

$Window.WaitFor 1

$Window.CheckOnly 2

$ClipBoard.Set 1

$ClipBoard.Get 2

10

Name Value

$IE.WaitSettingOption "specified_option_info"

$IE.WaitSettingScenario "specified_scenario_info"

$IE.WaitSettingNode "specified_node"

$IEGetTableInfo.GetCell "getcell"

$IEGetTableInfo.ExistCell "existcell"

$IEGetTableInfo.GetRow "getrow"

$IEGetTableInfo.GetColumn "getcolumn"

$IEGetTableInfo.GetAll "getall"

$WaitBox.Confirm 1

$WaitBox.Query 2

$GetDateTime.DateTime1 1

$GetDateTime.Date 2

$GetDateTime.Time 3

$GetDateTime.ScenarioInfoDateFormat "specified_scenario_info"

$GetDateTime.OptionInfoDateFormat "specified_option_info"

$GetDateTime.OptionInfoTimeZone "specified_option_info"

$GetDateTime.DefaultTimeZone "default_os"

$Calculate.Plus 1

$Calculate.Minus 2

$Calculate.Mul 3

$Calculate.Div 4

$Launcher.Single 1

$Launcher.Multi 2

$Launcher.WaitForEnd 3

$FullHalfWidth.ToFullWidth "to_fullwidth"

$FullHalfWidth.ToHalfWidth "to_halfwidth"

$Excel.GetValue "get_value"

$Excel.SetValue "set_value"

$Excel.RunMacro "run_macro"

$ImageMatch.Check 1

$ImageMatch.LeftClick 2

$ImageMatch.RightClick 3

$ImageMatch.LeftDouble 4

$ImageMatch.RightDouble 5

$ImageMatch.Move 6

$ImageMatch.LeftTriple 7

$ImageMatch.RightTriple 8

11

Name Value

$ImageMatch.LeftClickDrag 9

$ImageMatch.RightClickDrag 10

$ImageMatch.Same 0

$ImageMatch.Half 1

$ImageMatch.Quarter 2

$ImageMatch.StartPoint_LeftTop "LeftTop"

$ImageMatch.StartPoint_LeftBottom "LeftBottom"

$ImageMatch.StartPoint_RightTop "RightTop"

$ImageMatch.StartPoint_RightBottom "RightBottom"

$ImageMatch.Coordinate_Direct "DIRECT"

$ImageMatch.Coordinate_Percent "PERCENT"

$ImageMatch.Path_File "FilePath"

$ImageMatch.Path_Folder "FolderPath"

$ImageMatch.SelectShape_Ellipse "Ellipse"

$ImageMatch.SelectShape_Rectangle "Rect"

$OutlineMatch.Check 1

$OutlineMatch.LeftClick 2

$OutlineMatch.RightClick 3

$OutlineMatch.LeftDouble 4

$OutlineMatch.RightDouble 5

$OutlineMatch.Move 6

$OutlineMatch.LeftTriple 7

$OutlineMatch.RightTriple 8

$OutlineMatch.LeftClickDrag 9

$OutlineMatch.RightClickDrag 10

$OutlineMatch.Same 0

$OutlineMatch.Half 1

$OutlineMatch.Quarter 2

$OutlineMatch.LowPrecision 1

$OutlineMatch.MiddlePrecision 2

$OutlineMatch.HighPrecision 3

$OutlineMatch.StartPoint_LeftTop "LeftTop"

$OutlineMatch.StartPoint_LeftBottom "LeftBottom"

$OutlineMatch.StartPoint_RightTop "RightTop"

$OutlineMatch.StartPoint_RightBottom "RightBottom"

$OutlineMatch.Coordinate_Direct "DIRECT"

$OutlineMatch.Coordinate_Percent "PERCENT"

12

Name Value

$OutlineMatch.Path_File "FilePath"

$OutlineMatch.Path_Folder "FolderPath"

$OCRMatch.Check 1

$OCRMatch.LeftClick 2

$OCRMatch.RightClick 3

$OCRMatch.LeftDouble 4

$OCRMatch.RightDouble 5

$OCRMatch.Move 6

$OCRMatch.LeftTriple 7

$OCRMatch.RightTriple 8

$OCRMatch.LeftClickDrag 9

$OCRMatch.RightClickDrag 10

$OCRMatch.StartPoint_LeftTop "LeftTop"

$OCRMatch.StartPoint_LeftBottom "LeftBottom"

$OCRMatch.StartPoint_RightTop "RightTop"

$OCRMatch.StartPoint_RightBottom "RightBottom"

$OCRMatch.Coordinate_Direct "DIRECT"

$OCRMatch.Coordinate_Percent "PERCENT"

$HTTP.Get "get"

$HTTP.Put "put"

$HTTP.Post "post"

$HTTP2.RawFormat false

$HTTP2.JSONFormat true

$MailReceive.OneByOne "ONE_BY_ON"

$MailReceive.GetAll "GET_ALL"

$MailReceive.NumOnly "NUM_ONLY"

$MailReceive.Wait "RECEIVE_WAIT"

$MailReceive.Error "RETURN_ERROR"

$MailReceive.MailNum "RETURN_MAIL_NUM"

$MailSelect.Top "MAIL_TOP"

$MailSelect.NoProcessedTop "MAIL_NO_PROCESSED"

$MailSelect.ProcessedTop "MAIL_PROCESSED"

$MailSelect.Next "MAIL_NEXT"

$MailSelect.NextNoProcessed "MAIL_NEXT_NO_PROCESSED"

$MailSelect.NextProcessed "MAIL_NEXT_PROCESSED"

$MailStatusChg.Processed "PROCESSED"

$MailStatusChg.NoProcessed "NO_PROCESSED"

13

Name Value

$MailCopyClip.UniqueID "UID"

$MailCopyClip.FolderName "DIR"

$MailCopyClip.Status "STAT"

$MailCopyClip.SendDate "SEND_DATE"

$MailCopyClip.From "FROM"

$MailCopyClip.Subject "SUBJECT"

$MailCopyClip.Body "MESSAGE"

$MailCopyClip.NumberOfAttached "ATTACHMENT"

$MailRule.Subject "SUBJECT"

$MailRule.To "TO"

$MailRule.From "FROM"

$MailRule.Include "CONTAIN"

$MailRule.AtFirst "FIRST"

$MailRule.AtLast "LAST"

$MailRule.Equal "EQUAL"

$MailRule.Regex "REGULAR_EXPRESSION"

$MailAuth.UserPass "USER_PASS"

$MailRule.APOP "APOP"

$GmailReceive.OneByOne "ONE_BY_ON"

$GmailReceive.GetAll "GET_ALL"

$GmailReceive.NumOnly "NUM_ONLY"

$GmailReceive.Wait "RECEIVE_WAIT"

$GmailReceive.Error "RETURN_ERROR"

$GmailReceive.MailNum "RETURN_MAIL_NUM"

$WindowRule.Unspecified "NOSPECIFIED"

$WindowRule.ExactMatch "STRING_EQUALS"

$WindowRule.PartialMatch "CONTAINS"

$WindowRule.AtFirst "BEGINS"

$WindowRule.AtLast "ENDS"

$WindowRule.Regex "REGEX"

$WindowRule.Equal "EQUALS"

$WindowRule.GTE "GTE"

$WindowRule.LTE "LTE"

$SCENARIO_INFO.DefaultTimeZone "default_os"

$SCENARIO_INFO.DefaultDateFormat "WinActor.Main.Common.TimeFormat"

$SCENARIO_INFO.WaitSettingOption "specified_option_info"

$SCENARIO_INFO.WaitSettingScenario "specifed_scenario_info"

14

Name Value

$UIA.CommonPattern "CommonPattern"

$UIA.WaitSettingOption "option"

$UIA.WaitSettingScenario "scenario"

$UIA.WaitSettingNode "node"

$UIA.WaitForWindow "window"

$UIA.WaitForControl "element"

$UIA.ExpandCollapsePattern "ExpandCollapsePattern"

$UIA.InvokePattern "InvokePattern"

$UIA.ScrollPattern "ScrollPattern"

$UIA.SelectionPattern "SelectionPattern"

$UIA.SelectionItemPattern "SelectionItemPattern"

$UIA.TogglePattern "TogglePattern"

$UIA.ValuePattern "ValuePattern"

$UIA.UnknownPattern "Unknown"

$UIA.GetName "GetName"

$UIA.Expand "Expand"

$UIA.Collapse "Collapse"

$UIA.Invoke "Invoke"

$UIA.IsHorizontallyScrollable "IsHorizontallyScrollable"

$UIA.GetHorizontalViewportRatio "GetHorizontalViewportRatio"

$UIA.GetHorizontalViewportSize "GetHorizontalViewportSize"

$UIA.HorizontalScroll "HorizontalScroll"

$UIA.IsVerticallyScrollable "IsVerticallyScrollable"

$UIA.GetVerticalViewportRatio "GetVerticalViewportRatio"

$UIA.GetVerticalViewportSize "GetVerticalViewportSize"

$UIA.VerticalScroll "VerticalScroll"

$UIA.TwoWayScroll "TwoWayScroll"

$UIA.IsMultiSelectable "IsMultiSelectable"

$UIA.IsSelectionNeeded "IsSelectionNeeded"

$UIA.GetSelectionByTexts "GetSelectionByTexts"

$UIA.GetSelectionByIndexes "GetSelectionByIndexes"

$UIA.SelectItemByText "SelectItemByText"

$UIA.SelectItemByIndex "SelectItemByIndex"

$UIA.IsSelected "IsSelected"

$UIA.SelectAdditionally "SelectAdditionally"

$UIA.Unselect "Unselect"

$UIA.SelectOne "SelectOne"

15

Name Value

$UIA.Toggle "Toggle"

$UIA.GetToggleState "GetToggleState"

$UIA.IsReadOnly "IsReadOnly"

$UIA.GetValue "GetValue"

$UIA.SetValue "SetValue"

$UIA.Unknown "Unknown"

$UIA.LargeDecrement "LargeDecrement"

$UIA.SmallDecrement "SmallDecrement"

$UIA.LargeIncrement "LargeIncrement"

$UIA.SmallIncrement "SmallIncrement"

$UIA.NoAmount "NoAmount"

$UIA.ModeNormal "SetValueModeNormal"

$UIA.ModeKeyEvent "SetValueModeKeyEvent"

$UIA.ModeExcelCell "SetValueModeExcelCell"

$UIADUMP.WaitSettingOption "specified_option_info"

$UIADUMP.WaitSettingScenario "specified_scenario_info"

$UIADUMP.WaitSettingNode "specified_node"

$TAG.TopLeft "AREA_TOP_LEFT"

$TAG.TopCenter "AREA_TOP_CENTER"

$TAG.TopRight "AREA_TOP_RIGHT"

$TAG.CenterLeft "AREA_CENTER_LEFT"

$TAG.CenterCenter "AREA_CENTER_CENTER"

$TAG.CenterRight "AREA_CENTER_RIGHT"

$TAG.BottomLeft "AREA_BOTTOM_LEFT"

$TAG.BottomCenter "AREA_BOTTOM_CENTER"

$TAG.BottomRight "AREA_BOTTOM_RIGHT"

$EVENT.UpdateFile "UPDATE_FILE"

$EVENT.UpdateFolder "UPDATE_FOLDER"

$EVENT.SpecifiedTime "SPECIFIED_TIME"

$EVENT.Monthly "MONTHLY"

$EVENT.Weekly "WEEKLY"

$EVENT.Everyday "EVERYDAY"

$EVENT.Hour "HOUR"

$EVENT.Minute "MINUTE"

$EVENT.WindowState "WINDOW_STATE"

$EVENT.Mail "MAIL"

$EVENT.DAY "USER"

16

Name Value

$EVENT.STARTDAY "START"

$EVENT.LASTDAY "END"

$EVENT.Mon "1"

$EVENT.Tue "2"

$EVENT.Wed "4"

$EVENT.Thu "8"

$EVENT.Fri "16"

$EVENT.Sat "32"

$EVENT.Sun "64"

$SOCKET.ActionException "アクション例外"

$SOCKET.ActionExceptionEN "ActionException"

$SOCKET.CharASCII "ASCII"

$SOCKET.CharUTF-16LE "utf-16LEN"

$SOCKET.CharUTF-16LE-BOM "utf-16LE "

$SOCKET.CharUTF-16BE "utf-16BEN"

$SOCKET.CharUTF-16BE-BOM "utf-16BE"

$SOCKET.CharUTF-8 "utf-8n"

$SOCKET.CharUTF-8-BOM "utf-8"

$SOCKET.CharShift-JIS "shift_jis"

$SOCKET.CharEUC-JP "euc-jp"

$SOCKET.NewLineCRLF "CRLF"

$SOCKET.NewLineCR "CR"

$SOCKET.NewLineLF "LF"

$SOCKET.NewLineNONE "NONE"

$SOCKET.EndFin "Fin"

$SOCKET.EndSize "Size"

$SOCKET.EndEmpty "Empty"

 Action name

The identifiers that represent action names are as follows. They are case insensitive.

Table 4-5. Action names

Name

ClickWin32

SetTextWin32

SelectListWin32

SelectTabWin32

17

Name

EmulationWin32

GetTextWin32

GetListWin32

GetCheckWin32

GetEnableWin32

GetAllListWin32

ClickIE8

SetTextIE8

SelectListIE8

GetTextIE8

GetListIE8

GetCheckIE8

GetEnableIE8

GetTableinfoIE8

GetAllListIE8

SendText

ImageMatch

OutlineMatch

OCRMatch

WindowStateWait

TimerWait

InputBox

SelectBox

WaitBox

SetVariable

CopyVariable

GetDateTime

GetUserName

Calculate

CountUp

PlaySound

Beep

Speaker

Launcher

Clipboard

SetToClipboard

GetFromClipboard

18

Name

Script

TextConvert

Excel

MailReceive

MailSelect

MailStatusChg

MailSync

MailRemove

MailRemoveProcessed

MailCopyClip

MailAttachName

MailGetInfo

MailReceiveSet

MailReceiveImport

GmailReceiveSet

GmailReceive

GmailSendSet

GmailSend

Http

Http2

JsonWrite

JsonRead

UIAutomation

UiaDump

UiaExpandMenu

UiaCollapseMenu

UiaClick

UiaGetItemTextInList

UiaGetItemIndexInList

UiaGetAllItemTextInList

UiaSelectItemTextInList

UiaSelectItemIndexInList

UiaSelectTab

UiaSelectRadioButton

UiaGetText

UiaSetText

UiaSetChecked

19

Name

EventAdd

EventsWatch

EventRemove

EventsIgnore

Socket

 String

 String literals

Table 4-6. String literals

Name

Simple string literal

Verbatim string literal

Block verbatim string literal

 Naming conventions for strings

Table 4-7. Naming conventions for strings

Naming convention Description

".*" Characters enclosed in double quotes make a simple string

literal.

It may span multiple lines.

The \ (backslash) is an escape character and has the following

meanings with the next character.

For a string that span multiple lines, the escape character at the

end of a line is ignored. Even if the escape character is written at

the end of a line, it is not connected to the next line.

 \\ backslash

 \0 null

 \b backspace

 \r return

 \n linefeed

 \f formfeed

 \t horizontal tab

 \v vertical tab

20

Naming convention Description

@".*" A string starting with @" and ending with " is a verbatim string

literal.

A backslash character has no special meaning and is treated as

a backslash character itself.

To include a double quote in the string, write "" (consecutive two

double quotes).

Assumed to be used for a path name of a file or a folder.

@"""[\s]*$
...
"""

When a line ends with @""", all characters from the next line to

the line of only """ are treated as a string. This is a block verbatim

string literal.

No escape sequence is available.

Assumed to be used for script or annotation of a script adapter.

@""""[\s]*$
...
^""""[\s]*,?[\s]*$

When a line ends with @"""”, all characters from the next line to

the line of only "”"” are treated as a string. This is a block verbatim

string literal.

No escape sequence is available.

Assumed to be used for Python script or annotation of a script

adapter. When either of these notations are included in an

annotation or a comment of Python script, the result is indefinite.

 Structure

 Preamble

A preamble is used to describe node attributes such as "name" and "comment."

If the "isclosed" attribute is set to true, a node will be displayed in a closed style in the

flowchart.

In particular, the ID attribute is referred to by a sticky note or a breakpoint.

The nodes referring to the ID attribute are described later.

A position where a preamble can be placed is fixed.

A preamble is optional.

If omitted, the node name in the flowchart will be a fixed name for each node, and the

comment will be empty.

Details of the constant expression are described later.

 How to write a preamble

[Attribute identifier = Constant expression, ...]

Write the "Attribute identifier = Constant expression" parts separated by commas inside the

left and right square brackets.

21

The number of "Attribute identifier = Constant expression" parts can be 0.

Valid attribute identifiers are defined depending on the place of the preamble.

Usually in a node, "name" and "comment" attributes are valid.

"name" attribute corresponds to the name in a node property and "comment" attribute

corresponds to the comment.

The attributes specific to each preamble are described later.

 Example of a preamble

[name = "Decision group", comment = "Decision for each input", isclosed = true]

 Adapter parameter list

 How to write an adapter parameter list

(Attribute identifier|String<Identifier> = Actual parameter , ...)

Start with (and end with). Write adapter parameters inside the parentheses separated by

commas. Some are only ().

"<Identifier>" has meaning only in a specific adapter. (Described later.)

The "Attribute identifier|String<Identifier> = " part is optional depending on where it is used.

Write the following elements in the "Actual parameter" part. You cannot write a conditional

expression.

Table 4-8. Elements of actual parameters

Element Remarks

Expression Expressions may not be allowed depending on the attribute of the

adapter. (Described later)

Constant expression

Verbatim tuple

Adapter parameter list

 Examples of adapter parameter lists

Example1: WinActor.SendText adapter

(

 window_rule_ref = "Untitled-Notepad",

 control = (instance<true> = 0, text<true> = "Untitled - Notepad", position<true> = ret01),

 value = var01,

22

 sendcr = true,

 verify = true,

 capture = (imageid = "img_20190613172532792", x = 409, y = 10)

 // An example of using an adapter parameter list in the actual parameter part

)

Example 2: WinActor.EmulationWin32 adapter parameter list

(

 window_rule_ref = "Window",

 action = @(Wait, 300), // An example of using a verbatim tuple

 capture = (imageid = "_", x = 0, y = 0)

)

Example 3: WinActor.SelectBox adapter parameter list

(

 message = "Select",

 items = ("Red", "Blue", "White") // An example of omitting "attribute identifier ="

)

 Verbatim tuple

A verbatim tuple is a structure that consists of an identifier, a string, or a number.

It may include a constant expression to get a string or a number.

It is assumed to be used for writing mouse actions of the emulation adapter.

 How to write a verbatim tuple

@(Identifier|String|Number|(Constant expression) , ...)

Start with @(and end with). Write identifiers, strings, or numbers inside the parentheses

separated by commas.

Enclose constant expressions in (and). If not enclosed, a syntax error will occur.

An identifier is simply treated as a name. Even if the identifier has been declared as a

constant, the value will not be used.

Details of the constant declaration are described later.

 Example of verbatim tuples

action = (@(Mouse, L, DOWN, 421, 28, LEFTTOP, D, D),

 @(Mouse, L, UP, 421, 28, LEFTTOP, D, D),

 @(Wait, 1719),

 @(Mouse, L, DOWN, 62, 459, LEFTTOP, D, D),

 @(Mouse, L, UP, 62, 459, LEFTTOP, D, D),

23

 @(Wait, 695),

 @(Mouse, L, DOWN, 309, 446, LEFTTOP, D, D),

 @(Mouse, L, UP, 309, 446, LEFTTOP, D, D),

 @(Wait, ('Short wait')))

"Short wait" is assumed to be declared as a constant.

 Const tuple

A const tuple is used in the following places. It gives a constant to a name.

Table 4-9. Where to use constant tuples

Where to use constant tuples

Window match rule part

Sticky note for floating part

Breakpoint information part

Scenario information part

Image part

Flowchart information part

 How to write a constant tuple

(Attribute identifier|String = Constant expression, ...)

Start with (and end with). Write constant expressions inside the parentheses separated by

commas.

An attribute identifier or a string is written on the left side. If its string expression is the same,

it is regarded as the same name. (Example: abc and "abc" are the same)

An error will occur if attribute identifiers or strings are duplicated.

24

5. Scenario

 Scenario composition

A scenario is composed of multiple types of parts and should be written in the following order.

The required number of parts is determined by each type of the part.

Table 5-1. Scenario composition

No. Name Required number

❶ Variable part 0 or more

❷ Window match rule part 0 or more

❸ Main part 1

❹ Floating part 0 or more

❺ Subroutine part 0 or more

❻ WinWatcher part 0 or 1

❼ Breakpoint information part 0 or 1

❽ Scenario information part 1

❾ Image part 0 or 1

❿ Flowchart information part 1

⓫ Word dictionary part 0 or 1

 Variable part

 Syntax

Var_group Group name = (Variable declaration , ...)

 Description

Write variable declarations and constant declarations.

You can write multiple variables in one group.

Write "Group name" with a string or an identifier.

"Group name =" is optional.

You can write 0 or more variable declarations by separating them with commas.

 Variable declaration

25

 Syntax

const Identifier = Constant expression Preamble

 Description

Variable declaration and constant declaration are possible.

It becomes a variable declaration if "const" is omitted, and it becomes a constant declaration

if "const" is given.

In the case of variable declaration, "= Constant expression" is optional. If it is written, it

becomes the initial value.

The initial value is required for a constant declaration.

Another value cannot be assigned to an identifier with "const."

An identifier with "const" can be used in a constant expression.

The identifier must to be unique within a scenario. It cannot be the same even in different

variable groups.

The initial value of a variable in which the mask column is checked in the Variable list pane

of WinActor will not be output to the wss7 file.

"mask = true" will be output to the preamble.

If "mask = true" is specified in the preamble of the variable declaration and the initial value is

omitted, WinActor will use the initial value stored in the uss7 file.

 Window match rule part

 Syntax

Window_rule WinID name Preamble = (

 window_title = Const tuple,

 window_class = Const tuple,

 process_name = Const tuple,

 window_size = Const tuple

)

 Description

The window match rule part is assumed to be generated by WinActor itself and edited in

WSS as needed.

26

Write WinID name with a string. An error will occur if it is duplicated in the window match rule

part.

The only valid attribute in the preamble is the comment.

 window_title const tuple

 Syntax

(original_value = Title name string at capture, pattern = Title name string for matching, rule = rule)

 Predefined constants that can be specified in "rule"

Table 5-2. window_title rules

Predefined constant Description

$WindowRule.Unspecified Not specified

$WindowRule.ExactMatch Match

$WindowRule.PartialMatch Partial match

$WindowRule.AtFirst Prefix match

$WindowRule.AtLast Suffix match

$WindowRule.Regex Regular expression

 window_class const tuple

 Syntax

(original_value = Class name string at capture, pattern = Class name string for matching, rule = rule)

 Predefined constants that can be specified in "rule"

Table 5-3. window_class rules

Predefined constant Description

$WindowRule.Unspecified Not specified

$WindowRule.ExactMatch Match

 process_name const tuple

 Syntax

(original_value = Process name string at capture, pattern = Process name string for matching, rule = rule)

27

 Predefined constants that can be specified in "rule"

Table 5-4. process_name rules

Predefined constant Description

$WindowRule.Unspecified Not specified

$WindowRule.ExactMatch Match

 window_size const tuple

 Syntax

(original_value = Window size string at capture, pattern = Window size string for matching, rule = rule)

The window size string at capture or for matching is a string in which the width and the height

are connected by a comma. Although it has the same notation as a comma separated number,

it is a string of two numeric values, and cannot be treated as one numeric value here.

 Predefined constants that can be specified in "rule"

Table 5-5. window_size rules

Predefined constant Description

$WindowRule.Unspecified Not specified

$WindowRule.Equal Match

$WindowRule.GTE Greater than or equal to

$WindowRule.LTE Less than or equal to

 Example of the window match rule part

Window_rule "Untitled-Notepad" [comment = ""] = (

 window_title = (original_value = "Untitled - Notepad", pattern = "Untitled - Notepad", rule =

$WindowRule.ExactMatch),

 window_class = (original_value = "Notepad", pattern = "Notepad", rule = $WindowRule.ExactMatch),

 process_name = (original_value = "notepad.exe", pattern = "notepad.exe", rule =

$WindowRule.ExactMatch),

 window_size = (original_value = "818,388", pattern = "818,388", rule = $WindowRule.Unspecified)

)

28

 Main part

 Syntax

main Preamble {

 Sequence of statements

}

 Description

This is the part that corresponds to the start to end of a scenario in the flowchart.

The statements written in the main part will be executed in order.

There are no valid attributes in the preamble of the main part.

 Floating part

 Syntax

floating Preamble

{

 tag Preamble

 (tag_comment = Comment string, target = Constant expression, area = Relative position);

}

or

floating Preamble

{

 Sequence of statements

}

 Description

In the floating part, you can write one sticky note (tag) or multiple statements.

To associate a sticky note with a node, write the ID attribute in the preamble of the node and

specify the ID number in the target attribute of "tag."

The ID number must be an integer, an empty string, or a string that becomes an integer.

If an empty string is specified as an ID number, the sticky note is interpreted as an

independent one which has no association

Both the tag_comment attribute and target attribute are optional, and it is assumed that an

empty string is specified when omitted.

A “Relative position” of the sticky note may be specified in the area attribute. It must be one

of the “Relative position”s in the following table.

29

The specification to the area attribute may be omitted. In this case, it is interpreted as if the

absolute position is specified.

On the flowchart of WinActor, no pull-down menu corresponding to the area attribute exists

because the relative position is determined automatically using the position of the sticky note.

Table 5-6. Relative positons of a sticky note

Relative position Description

$TAG.TopLeft Upper left

$TAG.TopCenter Upper middle

$TAG.TopRight Upper right

$TAG.CenterLeft Middle left

$TAG.CenterCenter Middle

$TAG.CenterRight Middle right

$TAG.BottomLeft Lower left

$TAG.BottomCenter Lower middle

$TAG.BottomRight Lower right

When there are multiple statements, the compiler creates a group node to combine the

statements.

Write a tab (tab_id_ref) and node position (x, y) in the flowchart in the preamble of "floating."

For "tab_id_ref," give a string specified in "tab_id" of the flowchart information part.

You can write a name (name) and comment (comment) in the preamble of "tag."

In the preamble of “floating” that has statements, you can specify invisibility (TagVisible) of

the sticky note in addition to a tab and a note position.

Write “TagVisible = false” in the preamble to make it invisible.

 Example of the floating part

floating [x = 216, y = 37.5, tab_id_ref = 0]

{

 tag [name = "Sticky note", comment = "Sticky note of TimerWait"]

 (tag_comment = "Independent wait", target = 80); // target = "80" is also acceptable

}

floating [ID = 80, x = 1305, y = 6, tab_id_ref = 0]

30

{

 WinActor.TimerWait [name = "Independent place wait", comment = ""]

 (mode = $TimerWait.Sleep,

 timeout = 10,

 date_format = $TimerWait.ScenarioInfoDateFormat,

 timezone = $TimerWait.ScenarioInfoTimeZone

);

}

 Subroutine part

 Syntax

sub Subroutine name Preamble

 localvars(Sequence of variable names) ,

 chkempty(true or false)

{

 Sequence of statements

}

 Description

Write the subroutine name with a string or an identifier. Duplicate names will result in an error.

In the preamble, write the tab (tab_id_ref attribute) and node position (x attribute, y attribute)

in the flowchart, and the folded state (isclosed attribute, value is true or false). The name

attribute has no effect in the preamble. Write “TagVisible = false” in the preamble to make the

associated sticky notes invisible.

"chkempty(true or false)" is optional. When omitting, do not write the comma immediately

before it.

Variable names in "localvars" must be declared as variables in the variable part.

After the execution of the subroutine, the variable values will be restored to the values before

the execution.

In some libraries, the sequence of statements for the subroutine is hidden. The hidden

sequence of statements will not be displayed in WSS and cannot be changed.

31

 WinWatcher part

 Syntax

Rules = (

 (window_rule_ref = Window_rule WinID name, WinWatcher action), ...

)

 WinWatcher actions

One of the following three:

Table 5-7. WinWatcher actions

WinWatcher action Description

throw(exception name) Raises an exception. Write an exception name with a

string.

subref(subroutine name) Runs a subroutine.

Write a subroutine name with a string or an identifier.

error Stops the scenario.

 Description

WinID name must be declared in the window match rule part (Window_rule).

The WinWatcher action is executed when a window that meets the window match rule is

displayed.

"Rules" can contain multiple WinID name and WinWatcher action pairs.

 Example of the WinWatcher part

Rules = (

 (window_rule_ref = "Warning", throw("Raise warning ")),

 (window_rule_ref = "Enter network credentials", subref("Sound a buzzer")),

 (window_rule_ref = "Restricted", error)

)

32

 EventWatcher part

 Syntax

Events = (

EventWatcher name Preamble = (

ttrigger = Event trigger condition,

Event trigger condition parameters,

Call action parameters,

fromt_the_start = true or false // Whether to watch from the start or not

), ...

 Event trigger condition

Specify one of the followings for the event trigger condition.

Table 5-8. Event trigger conditions

Option Description

$EVENT.UpdateFile Update of a specific file

$EVENT.UpdateFolder Update of a specific folder

$EVENT.SpecifiedTime Time (specific time)

$EVENT.Monthly Time (monthly)

$EVENT.Weekly Time (weekly)

$EVENT.Everyday Time (every day)

$EVENT.Hour Time (every hour)

$EVENT.Minute Time (every minute)

$EVENT.WindowState Status of the window

$EVENT.Mail Mail reception

 Event trigger condition parameters

Parameters for each event trigger condition is described below.

Update of a specific file

path = File path to watch event,

Update of a specific folder

path = Folder path to watch event,

Time (specific time)

datetime = time, // yyyy/MM/dd HH:mm:ss format

33

Time (monthly)

type = Identifier of a monthly event type,

 day = day, // dd format, effective only when $EVENT.DAY is selected for the type

 hour = hour, // HH format

 minute = minuute, // mm format

Specify one of the followings as an identifier of a monthly event type.

Table 5-9. Identifiers of monthly event types

Option Description

$EVENT.DAY Every month (specified day)

$EVENT.STARTDAY Beginning of every month

$EVENT.LASTDAY End of every month

Time (weekly)

day_of_the_week = Identifier of a day of the week,

 hour = hour, // HH format

 minute = minuute, // mm format

Specify one of the followings as an identifier of a day of the week.

Table 5-10. Identifiers of days of the week

Option Description

$EVENT.Mon Monday

$EVENT.Tue Tuesday

$EVENT.Wed Wednesday

$EVENT.Thu Thursday

$EVENT.Fri Friday

$EVENT.Sat Saturday

$EVENT.Sun Sunday

Time (every day)

 hour = hour, // HH format

 minute = minuute, // mm format

Time (every hour)

 interval = interval hours, // 1 - 99

 minute = minuute, // mm format

34

Time (every minute)

 interval = interval minutes, // 1 - 120

Status of the window

 window_rule_ref = WinID name,

 win_state = expected status,

See “8.3.4 Wait for Window Status” for these parameters.

Mail reception

No parameter.

 Call action parameters

Parameters for each call action type is described below.

Call subroutine

 callsub String or identifier Preamble (Sequence of expressions),

See “6.12 Call subroutine statement” for these parameters.

Call scenario

 call_scenario Preamble (

 file = variable name or filename,

 call_vars = (calee’s variable name1 = initial value1, …),

 return_vars = (variable name1 that receives calee’s value = initial value1, …),

 return_value = variable name that receives the return value

),

See “6.13 Call scenario statement” for these parameters

 Description

Specify EventWatcher name as a string or an identifier.

Specify ‘Event trigger condition,’ ‘Event trigger condition parameters,’ ‘Call action

parameters,‘ and ‘Whether to watch from the start.’

An error occurs when the specified EventWatcher names is duplicated.

35

An error occurs when the specified Event trigger condition parameters are not in accordance

with the specified Event trigger condition.

 Example of the EventWatcher part

Events = (

 “EventWatcher name” [comment = “Comment”] = (

 trigger = $EVENT.UpdateFile,

 path = @"C:\temp\WinActor\WathcerData.txt",

 ‘return val’ = callsub “Subroutine group” [name = “Event list:Event watcher”] (),

 from_the_start = false

)

)

 Breakpoint information part

 Syntax

Breakpoint_info = (

 (id = Constant expression, enable = true or false), ...

)

 Description

You can write multiple breakpoint information.

For the breakpoint information, specify an ID and whether the breakpoint is enabled or

disabled.

The ID is the ID number specified in the ID attribute of the preamble of a node where the

breakpoint is set.

 Example of the breakpoint information part

Breakpoint_info = (

 (id = 88, enable = true)

)

36

 Scenario information part

 Syntax

Scenario_info = (

 creator = Creator string,

 contact = Contact string,

 expiration = Expiration string,

 remarks = Remarks string,

 dataupdate_change = true or false,

 ignore_datawrite_error = true or false, // If true, an error when writing a data list will be ignored.

 variable_limit = true or false, // If true, the number of characters in variable values will be

limited.

 save_ignore_exec = true or false, // If true, the run/skip node status will be saved.

 user_dictionary_enable = true or false, // If true, the user translation dictionary will be used when

running a scenario.

 wss_integer_arithmetic_only = true or false,

 // If true, all four arithmetic operations appeared in

expressions and constant expressions are treated as

integer arithmetic operations.

 wait_setting = Timeout option,

 wait_timeout = Timeout period, // milliseconds

 percent_variable = true or false,

 use_webdriver = true or false,

 collect_healing_info = true or false,

 alter_property_path = true or false

)

 Description

This is the part corresponding to the scenario information window of WinActor.

For the attributes that can be specified in the above syntax, the value of scenario information

can be changed in WSS.

“wss_integer_arithmetic_only” can be used only in WSS. It does not exist in the scenario

information of WinActor.

For “wait_setting”, give an option to indicate a source of the timeout period. The option is one

of the followings.

Table 5-11. Options for the source of the timeout period

Option Description

$SCENARIO_INFO.WaitSettingOption Timeout period in “Option” window

$SCENARIO_INFO.WaitSettingScenario Timeour period in “Scenario information” window

37

“wait_setting” is optional. ‘$SCENARIO_INFO.WaitSettingOption’ is the default.

For “wait_timeout”, give a timeout period in milliseconds or the variable that store a timeout

period. The timeout period should be in the range of 100 to 3,600,000.

“wait_timeout” is optional. The default value is 10,000.

When ‘$SCENARIO_INFO.WaitSettingOption’ is specified for “wait_setting,” the value

specified for “wait_timeout” is not used.

For “percent_variable,” specify true or false. If omitted, it is assumed to be false.

For “use_webdriver,” specify true or false. If omitted, it is assumed to be true on the script

created with WinActor before Ver.7.4, and to be false on the script created with WinActor

Ver.7.4 or later.

For “collect_healing_info,” specify true or false. If omitted, it is assumed to be false,

For “alter_property_path,” specify true or false. If omitted, it is assumed to be false. This setting

is effective only when “collect_healing_info = true” is specified.

 Example of the scenario information part

Scenario_info = (

 creator = "User A",

 contact = "User A",

 expiration = "2030/09/30 00:00:00",

 remarks = "",

 dataupdate_change = true,

 ignore_datawrite_error = false,

 variable_limit = true,

 save_ignore_exec = false,

 user_dictionary_enable = false,

 percent_variable = false,

 use_webdriver = false,

 collect_healing_info = false

)

38

 Image part

 Syntax

Images = (

 Image declaration ,...

)

 Description

The image part lists reference images held by WinActor.

Reference images are acquired by WinActor. They will not be recognized by WinActor when

they are written only in WSS.

An error will occur if the image IDs of the image declaration are duplicated.

 Image declaration

 Syntax

Image ID = (Attribute = Attribute value , ...)

 Attributes

Table 5-12. Image declaration attributes

Attribute Description

name Image name string

size Image size (percentage) when the image was captured. Numeric

value from 0 to 100.

width Numeric value of the image width

height Numeric value of the image height

 Example of image declarations

Images = (

 img_20190613104343897 = (name = "Untitled-Notepad", size = 50, width = 409, height = 194),

 img_20191210154248256 = (name = "start-GoogleSearch-InternetExplorer", size = 50, width = 562,

height = 531)

)

39

 Flowchart information part

 Syntax

Flow_divide_info = (

 Tab name string = (seq = Constant expression, tab_id = String) , ...

)

 Description

An error will occur if the tab name strings are duplicated.

"tab_id" should not be duplicated.

"tab_id" = "0" is mandatory.

"tab_id" is referenced from "tab_id_ref" of the preamble of the floating part or the subroutine

part. An error will occur if the reference destination of "tab_id_ref" cannot be found.

 Example of the flowchart information part

Flow_divide_info = (

 "Main" = (seq = 1, tab_id = "0"),

 "NewTab_1" = (seq = 2, tab_id = "1")

)

 Word dictionary part

 Syntax

Translation = (

 (Country identification string, Country identification string, ...),

 (Word string, Word string, ...),

 ...

)

 Description

This part sets up a word dictionary for each language.

The word dictionary can be set only in WinActor itself. The word dictionary part written in

WSS will not be reflected in WinActor itself.

First, write a const tuple of language type strings as a title.

Subsequently, write multiple const tuples with corresponding words.

The number of elements in all tuples must be the same.

40

 Example of the word dictionary part

Translation = (

 ("ja_JP", "en_US"),

 ("テキスト", "text"),

 ("入出力", "io"),

)

41

6. Statement

 Description

Letters .,; () {} are syntax elements. The italic parts are explained separately.

The statement preamble is optional.

Multiple statements can be written in "Sequence of statements." The number of statements

can be 0.

"Expression;" does not become a statement.

There is no empty statement, and only ";" is not allowed as a statement.

 Group statement

 Syntax

Group Preamble

{

 Sequence of statements

}

This is used to organize statement sequences.

When you write a sequence of statements in the floating part, the compiler puts them together

in a group statement.

To make associated sticky notes invisible, write “TagVisible = false” in the preamble.

The preamble is optional.

 if statement

 Syntax

if (Conditional expression) Preamble

then Preamble

{

 Sequence of statements

}

else Preamble

{

 Sequence of statements

}

"else preamble {}" of the "else" part is optional.

42

Only the name attribute is valid for the preamble of the "then" part and the "else" part.

To make associated sticky notes invisible, write “TagVisible = false” in the first preamble.

 while statement

 Syntax

while Preamble

Loop condition

(Counter Identifier)

{

 Sequence of statements

}

"(Counter identifier)" that specifies a counter variable is optional.

No special identifier can be specified for the counter. Variables declared as constants cannot

be specified either.

The anonymous identifier '' can be specified for the counter.

"while" and "Counter" are case insensitive.

If the attribute "isclosed_body" is set to true in the preamble, the while node will be displayed

with the body part closed.

To make associated sticky notes invisible, write “TagVisible = false” in the preamble.

The preamble is optional.

 Loop condition

 Syntax

One of the following eight formats:

For details, see the "Pre-Test Loop" node in "WinActor Operation Manual."

Table 6-1. Loop condition formats

Format Description

(conditional expression) Repeats the loop until the conditional

expression becomes false. Details of the

conditional expression are described later.

(true) Always represents a true conditional

expression. Keeps to repeat the loop.

(false) Always represents a false conditional

expression. Never being in a loop.

43

Format Description

(Start = expression, End = expression) Repeats the loop within the specified range of

numbers.

(File = string or variable name) Specifies an Excel or a CSV file and repeats the

loop for the number of data.

(DBSource = string or variable name ,

 User = string or variable name ,

 Password = string or variable name ,

 Table = string or variable name)

Repeats the loop for the number of data

records in the database.

(Template_And_Data = variable name,

 Iterate = true or false,

 IterateOver = expression,

 IsUpdate = true or false,

 UpdateTo = variable name)

Repeats the loop for the number of data using

template and data.

‘IterateOver’ is effective only when “Iterate =

true,” and ‘UpdateTo’ is effective only when

“IsUpdate = true.”

(Json_Object = variable name or JSON array

string

 Key = expression,

 KeyOut = variable name,

 ValueOut = variable name)

Repeats the loop obtaining keys and values

from JSON object or JSON array.

Following are common loop condition syntax for the while statement and dowhile statement.

Enclose the loop condition in parentheses.

true, false, Start, End, File, DBSource, User, Password, Table, Template_And_Data, Iterate,

IterateOver, IsUpdate, UpdateTo, Json_Object, Key, KeyOut, and ValueOut are case

insensitive.

 dowhile statement

 Syntax

dowhile Preamble

Loop condition

(Counter Identifier)

{

 Sequence of statements

}

"(Counter identifier)" that specifies a counter variable is optional.

No special identifier can be specified for the counter. Variables declared as constants cannot

be specified either.

The anonymous identifier '' can be specified for the counter.

"dowhile" and "Counter" are case insensitive.

44

If the attribute "isclosed_body" is set to true in the preamble, the dowhile node will be

displayed with the body part closed.

To make associated sticky notes invisible, write “TagVisible = false” in the preamble.

The preamble is optional.

 Loop condition

Same as "6.4.1 Loop condition."

 switch statement

 Syntax

switch Preamble

Sequence of case statements

Default statement

The default statement is optional.

When an expression including calculation is given to a case statement, the compiler replaces

"switch" with an "if-then-else" statement, and the representation on the flowchart changes.

To make associated sticky notes invisible, write “TagVisible = false” in the preamble.

The preamble is optional.

 Case statement

 Syntax

Case (Conditional expression) Preamble

{

 Sequence of statements

}

Conditional expression is required.

"Case" is case insensitive.

The preamble is optional.

Only the name attribute is valid for the preamble.

45

 Default statement

 Syntax

Default

{

 Sequence of statements

}

No preamble can be added to the default statement.

"Default" is case insensitive.

 try statement

 Syntax

try Preamble

{

 Sequence of statements

}

Sequence of catch statements

At least one catch statement is required.

To make associated sticky notes invisible, write “TagVisible = false” in the preamble.

The preamble is optional.

 catch statement

 Syntax

catch Exception handling name string Preamble

{

 Sequence of statements

}

The preamble is optional. There are no valid attributes.

 return statement

 Syntax

return (Expression) Preamble ;

46

The return statement can be used only within a subroutine block defined in the subroutine

part.

"Expression" is optional, but "(" and ")" cannot be omitted.

To make associated sticky notes invisible, write “TagVisible = false” in the preamble.

The preamble is optional.

 scenario return statement

 Syntax

scenario_return (Expression) Preamble ;

"Expression" and “Preamble” are optional.

The value of the “Expression” is the return value to the statement “call_scenario” in the

caller’s scenario.

To make associated sticky notes invisible, write “TagVisible = false” in the preamble.

If this statement is not placed in the main part, a warning occurs.

 break statement

 Syntax

break Preamble ;

The break statement can be used only within a "while" or "dowhile" block.

To make associated sticky notes invisible, write “TagVisible = false” in the preamble.

The preamble is optional.

 continue statement

 Syntax

continue Preamble ;

The continue statement can be used only within a "while" or "dowhile" block.

To make associated sticky notes invisible, write “TagVisible = false” in the preamble.

The preamble is optional.

47

 Call subroutine statement

 Syntax

callsub String or identifier Preamble (Sequence of expressions) ;

Define a subroutine corresponding to "String or identifier".

"callsub" is optional.

"Sequence of expression" is optional, but "(" and ")" cannot be omitted.

To make associated sticky notes invisible, write “TagVisible = false” in the preamble.

The preamble is optional.

 Call scenario statement

 Syntax

Call_scenario Preamble (

 file = variable name of filename

 call_vars = (callee’s variable name1 = initial value1, …),

 return_vars = (variable name1 that receives callee’s value = initial value1, …),

 return_value = variable name that receives the return value

) ;

The value of “call_vars” is pairs of a callee’s variable name and its initial value if the pairs

exist. The “call_vars” is optional.

If a callee’s variable name of a pair does not exist, the pair is ignored.

Not to specify an initial value, write an anonymous identifier ‘’ (two single quotes) as a value.

To specify a value without a variable name, write “ ‘’ = value” however a warning occurs when

such a script is loaded.

The value of “return_vars” is names of variables to be returned when the callee’s scenario

ends. The “return_vars” is optional.

The return value of the callee will be stored in the variable specified for the “return_value.”

The value is returned in the scenario_return statement in the callee’s scenario.

The return value is not stored in the specified variable when this statement appears in an

assignment statement or in an expression. When the assign statement or expression

48

appears in the WSS output of a flowchart, the variable to set in the property for the return

value is omitted.

The “return_value” is optional.

To make associated sticky notes invisible, write “TagVisible = false” in the preamble.

The preamble is optional.

Example

 call_scenario [name = "Call Scenario File", comment = ""]

 (

 file = @"C:\Users\user\Documents\sub.ums7",

 call_vars = (name = "user"),

 //Set "user" to the “name” in the scenario “sub.ums7” and launch it

 return_vars = (ret) //Receive the value of the ”ret” in the scenario “sub.ums7

);

 result = call_scenario [name = "Call Scenario File", comment = ""]

 // Assign the result set with scenario_return

 (

 file = @"C:\Users\user\Documents\sub2.ums7",

 call_vars = (), // Omit variables and values

 return_vars = () // Omit variables

);

 Adapter action statement

 Syntax

Adapter action ;

Calls an adapter action.

In the case of an action that returns a value, the value will be discarded unless the return

destination of the value is set in the action parameter.

When calling an action that returns a value, it is recommended to place an adapter action on

the right side of an assignment statement. When the assign statement appears in the WSS

output of a flowchart, the property settings for storing the return value is omitted.

See the chapter on adapter actions.

49

 Assignment statement

 Syntax

Identifier = Expression Preamble ;

Assigns a value of an expression to a variable.

The identifier on the left side of "=" is one of the following.

Table 6-2. Identifiers in the assignment statement

Identifier

Identifier declared as a variable in the variable part

Read-write special identifier

If you specify an ID (such as for a breakpoint) to both the preamble of an assignment

statement and the preamble of the element in the expression (such as an adapter action),

the both IDs will be effective, and there will be no optimization of reducing assignment

operations.

Specifying an ID only for the preamble of the element in the expression may reduce the

number of nodes to be generated.

To make associated sticky notes invisible, write “TagVisible = false” in the preamble.

The preamble is optional.

 Four arithmetic operations

The four arithmetic operations can be written freely.

The representation on the flowchart may change because the compiler adds the necessary

nodes when converting WSS into nodes.

50

7. Expression

An expression is a combination of one or more factors with the four arithmetic operators of

+, -, *, /, +^, -^, *^, and /^..

You can place unary operators of +, -, +^, and -^ in front of the factor.

The priority of operators is as follows.

Table 7-1. Priority of operators

No. Operator

❶ Unary operator + - +^ -^

❷ * / *^ /^

❸ + - +^ -^

When a factor at the time of execution is a simple string literal, the operation by the unary

operator and the four arithmetic operators cannot be performed.

However, if the factor is a string literal that can be interpreted as a number, these operations

can be performed.

There is no operation to obtain a Boolean value.

Operators of +^, -^, *^,and /^ are used in integer arithmetic. They correspond to the nodes

of four arithmetic operations with the “Calculate as an integer and truncate the result

numbers beyond the decimal point.” checked.

They can be used with +, -, *, and / by mixture.

If any operand of the operator is not an integer, a runtime error occurs. A comma separated

number is not an integer thus a runtime error occurs if it is an operand of the operator..

When unary operators +^, -^ are placed before a factor, they are treated as “(0 +^ factor)”,

“(0 -^ factor)” respectively and checked for whether they are integers or not.

When even number of unary operators of integer arithmetic are placed like “-^ -^ factor”, they

are treated as “(0 +^ factor)”.

Even if a factor is a comma separated number with full-width commas or noted with full-width

digits, the result of an operation is a number noted with half-width digits.

 Factor

 Syntax

A factor is one of the following:

51

Table 7-2. Factor syntax

Factor Remarks

Integer

Float

String Unary operation and four arithmetic operations

cannot be applied.

Identifier

TRUE Interpreted as the string "TRUE."

Unary operation and four arithmetic operations

cannot be applied.

FALSE Interpreted as the string "FALSE."

Unary operation and four arithmetic operations

cannot be applied.

Adapter action with return value The property settings for the returned arguments’ list

are ignored.

In the WSS output, the property settings for storing

the return value are omitted.

Call subroutine with return value

Call scenario with return value

(expression)

The identifier is a variable, constant, predefined constant, special variable, or anonymous

identifier.

Anonymous identifiers and identifiers whose values are string literals cannot perform the

unary operation and four arithmetic operations.

 Constant expression

A constant expression is an expression that is calculated to a constant when compiling. The

result may be a Boolean value.

It consists of one or more constant factors combined with a binary operator for constant

expressions.

String literals that can be interpreted as numbers can be included in constant expressions.

However, if the operands on both sides of a comparison operator are string literals, they are

not interpreted as numbers.

The operands of && (and) and || (or) must be Boolean values on both sides. Both sides will

be evaluated.

The operands of ~ (regular expression match) and !~ (regular expression unmatch) must be

string literals on both sides.

52

The operands of * / + - must be numeric values or string literals that can be interpreted

as numbers on both sides.

The operands of *^ /^ +^ -^ must be integer values on both sides. If either of them has

a value beyond the decimal point, an error occurs. A comma separated number is not an

integer value thus an error occurs if it is included in the operands.

The operands of == != >= > < <= must be numeric values on both sides or string

literals on both sides.

An operations on a number and a string literal is not possible.

When both sides are string literals, none of them is interpreted as a number even when both

of them can be interpreted as numbers. For example, the operands in “2000” < “300” are

regarded as strings on both sides, and the expression is evaluated to be true. The operands

in “2000” < 300 are interpreted as numbers on both sides, and the expression is evaluated

to be false.

If both sides are string literals, == and != will be case sensitive and compared with exact

match.

>= > < <= are case insensitive and compared lexicographically.

 Binary operators for constant expressions

The order of priority (highest to lowest) is as follows.

Table 7-3. Binary operators for constant expressions

No. Binary operator Remarks

❶ * / *^ /^ &&

❷ + - +^ -^ || You can place unary operators of + - ;^ -^ in

front of the factor.

❸ == != >= > < <= ~ !~

 Constant factors

 Syntax

A constant factor is one of the following:

Table 7-4. Constant factor syntax

Constant factor Remarks

Integer

Float

53

Constant factor Remarks

String Unary operation cannot be applied.

Identifier

TRUE Interpreted as the string "TRUE."

+ - unary operation cannot be applied.

FALSE Interpreted as the string "FALSE."

+ - unary operation cannot be applied.

strcmp(constant expression, constant

expression)

The constant expression must be a string literal.

Case-sensitive comparison, and the result is

"true" or "false".

strcasecmp(constant expression, constant

expression)

The constant expression must be a string literal.

Case-insensitive comparison, and the result is

"true" or "false".

! constant factor The constant factor must be a Boolean value.

(constant expression)

The identifier is a constant, predefined constant, read-only special variable, or anonymous

identifier.

Anonymous identifiers cannot be operated.

For undefined identifiers, a warning will be output and the value will be treated as the integer

zero, and the process will continue.

 Conditional expression

A conditional expression consists of one or more conditional expression factors combined

with && or ||.

Priority is given to &&, but it is recommended to enclose it in parentheses as much as

possible.

The result of a conditional expression is "true" or "false."

 Binary operators for conditional expressions

A binary operator for conditional expressions is one of the following:

Table 7-5. Binary operators for conditional expressions

Binary operator

== != >= > < <= ~ !~

54

 Conditional expression factors

The result of a conditional expression factor is "true" or "false."

 Syntax

A conditional expression factor is one of the following:

Table 7-6. Conditional expression factor syntax

Conditional expression factor Remarks

istrue(expression) The result is "true" or "false."

isfalse(expression) The result is "true" or "false."

strcmp(expression, expression) The expression must be a string literal.

Case-sensitive comparison.

strcasecmp(expression, expression) The expression must be a string literal.

Case-insensitive comparison.

Expression Binary operator for conditional

expression Expression

TRUE

FALSE

! conditional expression factor

(conditional expression)

55

8. Adapter actions

Adapter actions correspond to nodes in the action category.

An adapter action that returns a value can be included in an expression.

See "4.6 Structure" for general notation for adapter parameter lists.

 Syntax

WinActor.Action name Preamble Adapter parameter list

"Action name" is case insensitive.

For an action that returns a value, specify a name of a variable to which the value is to be

returned in a specific attribute name (such as value).

If an action that returns a value is used in an expression (including an assignment statement),

the return destination specified by the attribute name will be ignored. In this case, the attribute

name of the return destination can be omitted. Thus, when the assign statement or

expression appears in the WSS output of a flowchart, the attribute name for the return value

is omitted.

To make associated sticky notes invisible, write “TagVisible = false” in the preamble.

The preamble is optional except for some parts.

The following shows the adapter parameter list for each action.

 Automatic recording

 Event recording – Click

This is an operation of clicking a button, check box, or radio button.

WinActor.ClickWin32 Preamble

 (

 window_rule_ref = Window_rule WinID name,

 control = (instance<check> = expression, text<check> = expression, position<check> =

position),

 wait_setting = Timeout option,

 wait_timeout = Timeout period, // milliseconds

 capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

No value is returned.

"window_rule_ref," "control," "capture" are required.

56

For "Window_rule WinID name," write "WinID name" of the window match rule part. (The

same applies to the actions described below.)

"<check>" attached to the attribute of "control" is for specifying check box status in the Details

tab displayed in the property of a node recorded in the Event mode.

<true> for checked and <false> for unchecked.

For "instance" of "control," specify a serial number assigned to the control with a number or

a variable that stores a number. (The same applies to the actions described below.)

For "text" of "control," specify a string displayed in the control with a string or a variable that

stores a string. (The same applies to the actions described below.)

The "position" of "control" is a variable or a string or (x = constant expression, y = constant

expression). (The same applies to the actions described below.)

When you do not specify the position, write it as a string "" or the constant expression as "",

such as (x = "", y = "").

When you specify it with a variable or a string, write x and y coordinates combined with a

comma. (Example: "100,200")

Table 8-1. Sources of the timeout period

Item type Description

$WIN32.WaitSettingOption The timeout is set in the “Option” dialog.

$WIN32.WaitSettingScenario The timeout is set in the “Scenario information” window.

$WIN32.WaitSettingNode The timeout is set for “wait_timeout” in the “Property” pane.

“wait_setting” is optional. ‘$WIN32.WaitSettingScenario’ is the default.

For “wait_timeout”, give a timeout period in milliseconds or the variable that store a timeout

period. The timeout period should be in the range of 100 to 3,600,000. If the specified period

is out of the range, a warning message is displayed, and the nearer of the two values 100

and 3,600,000 is used instead.

If an anonymous identifier ‘’ (two single quotes) is specified as a variable name, 10,000 is

used as the timeout period.

“wait_timeout” is optional. The default value is 10,000.

When ‘$WIN32.WaitSettingOption’ or ‘$WIN32.WaitSettingScenario’ is specified for the

“wait_setting,” the value specified for “wait_timeout” is not used. The “wait_timeout” property

of a node is output to the .wss file from WinActor only when ‘Use this ”Property”’ is selected

for “Timeout setting” in the “Property” pane of the node.

For "imageid" of "capture," specify an image ID in the image declaration of the image part.

"mouse coordinate X" and "mouse coordinate Y" of "capture" are numerical constants. When

you do not specify the coordinates, write them as "".

57

 Event recording – Set Text

This is an operation to set a string in a text box.

WinActor.SetTextWin32 Preamble

 (

 window_rule_ref = Window_rule WinID name,

 control = (instance<check> = expression, text<check> = expression, position<check> =

position),

 value = Expression, // Text string to set

 wait_setting = Timeout option,

 wait_timeout = Timeout period, // milliseconds

 capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

No value is returned.

If the expression of "value" results in a number, it is regarded as a string.

When you do not set an expression, specify the anonymous identifier '' (two single quotes)

in "value."

If you specify "" (two double quotes), it means that you specify an empty string.

For “wait_setting” and “wait_timeout,” see description in “8.1.1 Event recording – Click.”

 Event recording – Select Item in List

This is an operation to select an item in a list box or combo box.

WinActor.SelectListWin32 Preamble

 (

 window_rule_ref = Window_rule WinID name,

 control = (instance<check> = expression, text<check> = expression, position<check> =

position),

 value = Expression or variable name,

 kind = Item type,

 wait_setting = Timeout option,

 wait_timeout = Timeout period, // milliseconds

 capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

No value is returned.

For "kind," specify the item type $SelectListWin32.index or $SelectListWin32.text.

58

Table 8-2. Item types in the Select Item in List action

Item type Description

$SelectListWin32.index Selects an item in a list by specifying a zero-based index

$SelectListWin32.text Selects an item in a list by a string displayed in the list

For "value," specify an expression that results in a value for selecting a list box or a variable

name that stores a value.

For “wait_setting” and “wait_timeout,” see description in “8.1.1 Event recording – Click.”

 Event recording – Select Tab

This is an operation to switch tabs.

WinActor.SelectTabWin32 Preamble

 (

 window_rule_ref = Window_rule WinID name,

 control = (instance<check> = expression, text<check> = expression, position<check> =

position),

 value = Expression or variable name,

 kind = Item type,

 wait_setting = Timeout option,

 wait_timeout = Timeout period, // milliseconds

 capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

No value is returned.

For "kind," specify the item type $SelectTabWin32.index or $SelectTabWin32.text.

Table 8-3. Item types in the Select Tab action

Item type Description

$SelectTabWin32.index Selects a tab by specifying a zero-based index

$SelectTabWin32.text Selects a tab by a string displayed on the tab

For "value," specify an expression that results in a value for selecting a tab or a variable

name that stores a value.

For “wait_setting” and “wait_timeout,” see description in “8.1.1 Event recording – Click.”

59

 Event recording – Emulate

This is automatic operations to emulate a sequence of mouse click positions and keyboard

operations.

WinActor.EmulationWin32 Preamble

 (

 window_rule_ref = Window_rule WinID name,

 action = Sequence of actions,

 wait_setting = Timeout option,

 wait_timeout = Timeout period, // milliseconds

 capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

No value is returned.

For "action," write multiple mouse operations, keyboard operations, and waits. The actions

will be executed in the order.

The sequence of actions is written as follows:

Table 8-4. Sequence of actions for emulation

Sequence of actions Description

Action When writing only one action

(Action, ...) When writing multiple actions, separate them with commas and enclose

them in parentheses.

The following three types of actions are available. These can be mixed.

Table 8-5. Emulation actions

Action

Mouse action

Key action

Wait

Mouse action

@(Mouse, button, movement, X-coordinate, Y-coordinate, origin, X_D/P, Y_D/P, Scale)

60

Table 8-6. Mouse actions for emulation

Mouse action Description

Button One of the following:

L Left button

R Right button

M Middle button

Movement One of the following:

DOWN Button down

UP Button up

MOVE Move

DBL Button double-click

Origin One of the following: (case insensitive)

LEFTTOP Upper left origin

RIGHTTOP Upper right origin

LEFTBOTTOM Lower left origin

RIGHTBOTTOM Lower right origin

X_D/P

Y_D/P

Select a method to specify X and Y coordinates.

One of the following: (case insensitive)

D Direct (in pixels)

P % (percentage to the width or height

of the window)

Scale Scale factor of captured image 1.0 for equal magnification

optional

Key action

@(Key, key code, UP/DOWN)

Wait

@(Wait, wait time)

The unit of wait time is milliseconds

For “wait_setting” and “wait_timeout,” see description in “8.1.1 Event recording – Click.”

Example

 Var_group (

 const DefaultWaitTime = 2*1000 [comment = "2sec"]

)

 // Mouse operation and wait

61

 action = (@(Mouse, L, DOWN, 796, 56, LEFTTOP, D, D),

 @(Mouse, L, UP, 796, 56, LEFTTOP, D, D),

 @(Mouse, NON, MOVE, 799, 100, LEFTTOP, D, D),

 @(Wait, 1000)),

 // Keyboard operation and wait

 action = (@(Key, 18, DOWN),

 @(Key, 115, DOWN),

 @(Key, 115, UP),

 @(Key, 18, UP),

 @(Wait, (DefaultWaitTime + 2 * 500))), // Enclose constant expressions in parentheses

 // Write only one action

 action = @(Wait, 300),

 Event recording – Get String

WinActor.GetTextWin32 Preamble

 (

 window_rule_ref = Window_rule WinID name,

 control = (instance<check> = expression, text<check> = expression, position<check> =

position),

 value = Variable name to receive the result,

 wait_setting = Timeout option,

 wait_timeout = Timeout period, // milliseconds

 capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

The result is returned to the variable specified in "value." Specify a writable variable.

If WinActor.GetTextWin32 appears in an assignment or expression, the result will not be

stored in the variable. Specifying the variable to receive the result is optional. When the

assign statement or expression appears in the WSS output of a flowchart, the variable to set

in the property for the return value is omitted.

For “wait_setting” and “wait_timeout,” see description in “8.1.1 Event recording – Click.”

Example

 Var_group (

 var01 = 0 [comment = "work variable"],

 ret01 = 0 [comment = "for return"]

)

 // Assign the result to a variable.

 ret01 = WinActor.GetTextWin32 [name = "Get String (WIN32)", comment = "get text"]

 (

 window_rule_ref = "Untitled-Notepad",

 control = (instance<true> = var01, text<true> = var01, position<true> = var01),

62

 capture = (imageid = "img_20191115153616376", x = 1197, y = 159)

);

 // Specify a variable name to return the result (value attribute)

 WinActor.GetTextWin32 [name = "Get String (WIN32)", comment = "get text"]

 (

 window_rule_ref = "Untitled-Notepad",

 control = (instance<true> = var01, text<true> = var01, position<true> = var01),

 value = ret01,

 capture = (imageid = "img_20191115153616376", x = 1197, y = 159)

);

 Event recording – Get Item in List

WinActor.GetListWin32 Preamble

 (

 window_rule_ref = Window_rule WinID name,

 control = (instance<check> = expression, text<check> = expression, position<check> =

position),

 value = Variable name to receive the result,

 kind = Item type,

 wait_setting = Timeout option,

 wait_timeout = Timeout period, // milliseconds

 capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

The result is returned to the variable specified in "value."

If WinActor.GetListWin32 appears in an assignment or expression, the result will not be

stored in the variable. Specifying the variable to receive the result is optional. When the

assign statement or expression appears in the WSS output of a flowchart, the variable to set

in the property for the return value is omitted.

For "kind," specify the item type $GetListWin32.index or $GetListWin32.text.

Table 8-7. Item types in Get Item in List

Item type Description

$GetListWin32.index Gets an index of the selected element in the list

$GetListWin32.text Gets a name of the selected element in the list

For “wait_setting” and “wait_timeout,” see description in “8.1.1 Event recording – Click.”

63

 Event recording – Get Check State

WinActor.GetCheckWin32 Preamble

 (

 window_rule_ref = Window_rule WinID name,

 control = (instance<check> = expression, text<check> = expression, position<check> =

position),

 value = Variable name to receive the result,

 wait_setting = Timeout option,

 wait_timeout = Timeout period, // milliseconds

 capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

True or false is returned to the variable specified in "value."

If WinActor.GetCheckWin32 appears in an assignment or expression, the result will not be

stored in the variable. Specifying the variable to receive the result is optional. When the

assign statement or expression appears in the WSS output of a flowchart, the variable to set

in the property for the return value is omitted.

For “wait_setting” and “wait_timeout,” see description in “8.1.1 Event recording – Click.”

 Event recording – Get Enable/Disable State

WinActor.GetEnableWin32 Preamble

 (

 window_rule_ref = Window_rule WinID name,

 control = (instance<check> = expression, text<check> = expression, position<check> =

position),

 value = Variable name to receive the result,

 wait_setting = Timeout option,

 wait_timeout = Timeout period, // milliseconds

 capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

True or false is returned to the variable specified in "value."

If WinActor.GetEnableWin32 appears in an assignment or expression, the result will not be

stored in the variable. Specifying the variable to receive the result is optional. When the

assign statement or expression appears in the WSS output of a flowchart, the variable to set

in the property for the return value is omitted.

For “wait_setting” and “wait_timeout,” see description in “8.1.1 Event recording – Click.”

64

 Event recording – Get All Items in List

WinActor.GetAllListWin32 Preamble

 (

 window_rule_ref = Window_rule WinID name,

 control = (instance<check> = expression, text<check> = expression, position<check> =

position),

 file = Variable name or filename,

 wait_setting = Timeout option,

 wait_timeout = Timeout period, // milliseconds

 capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

No value is returned.

For "file," specify a filename string to output the result or a variable name that stores a

filename.

For “wait_setting” and “wait_timeout,” see description in “8.1.1 Event recording – Click.”

 UIAutomation

WinActor.UIAutomation Preamble

 (

 window_rule_ref = Window_rule WinID name,

 path = Control path JSON-format string,

 expand_variable = true / false, // whether to expand embedded variables or not

 pattern = Control pattern,

 action = Action,

 use_wildcard = true / false, // whether to enable ambiguous specification with ‘*’

 wait_setting = Timeout setting,

 wait_timeout = Timeout, // milliseconds

 wait_timeout_period = Wait condition,

 cache_update = true / false, // Forced update flag of the cache, Default: false

 wait_retry_max = Maximum number of retries,

 path_version = $UIA.Version2, // or $UIA.Version1

 activate_target = true / false,

 // whether to activate the target window during execution, Default: true

 control = Control spec,

 result = Variable name to receive the result,

 capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

For “path,” specify a target control by a control path expressed in JSON-format string.

As the JSON-format string usually includes many double quotes, it is recommended to write

it as a verbatim string literal.

65

The “path” is required.

To expand variables in the “path” string, include %variable_name% in the string and set true

to the “expand_variable.” If the “expand_variable” is not specified, it is regarded as false.

For “pattern,” specify a control pattern which specifies an operation for the target control.

The “pattern” can be omitted. The control pattern corresponding to the action specified for

the “action” is used if “pattern” is omitted.

For the valid pairs of a control pattern and an action, see the “Table 8-11 Adapter parameter

list of UIAutomation.”

The common prefix “$UIA” is omitted for the identifiers in the table.

For “action,” specify an action, which is defined for each control patterns,

For the valid pairs of a control pattern and an action, see the “Table 8-11 Adapter parameter

list of UIAutomationtable.”

The common prefix “$UIA” is omitted for the identifiers in the table.

For “use_wildcard,” set whether to enable or disable the ambiguous specification with ‘*’ in

the target control specification of UIAutomation.

Set true to enable the ambiguous specification.

Set false to disable the ambiguous specification.

“use_wildcard” is optional. If omitted, it is assumed to be false, which disables the ambiguous

specification.

For “wait_setting,” specify the place to set the timeout, which is the time to wait for the target

control and its window to be present after the UIAutomation node is being executed. Select

one of the followings as the place.

Table 8-8. Sources of the timeout period

Item type Description

$UIA.WaitSettingOption The timeout is set in the “Option” window.

$UIA.WaitSettingScenario The timeout is set in the “Scenario information” window.

$UIA.WaitSettingNode The timeout is set for “wait_timeout” in the “Property” pane.

The “wait_setting” is optional. $UIA.WaitSettingNode is the default value.

66

For “wait_timeout,” specify a timeout period in milliseconds or the variable that store a timeout

period. The timeout period should be in the range of 100 to 3,600,000. If the specified value

is out of the range, a warning message is displayed, and the nearer of the two values 100

and 3,600,000 is used instead.

If an anonymous identifier ‘’ (two single quotes) is specified as a variable name, 30,000 is

used as the timeout period.

The “wait_timeout” is optional. The default value is 30,000.

When ‘$UIA.WaitSettingOption’ or ‘$UIA.WaitSettingScenario’ is specified for “wait_setting,”

the setting in “wait_timeout” is not used.

For “wait_timeout_period,” select one of the following waiting conditions.

Table 8-9. Waiting conditions

Waiting condition Description

$UIA.WaitForWindow Waiting for the window to be found

$UIA.WaitForControl Waiting for the target control to be found

The “wait_timeout_period” is optional. The default value is $UIA.WaitForControl.

For “cache_update,” specify whether to update the cache used in the execution of

UIAutomation node forcibly.

When true is specified, UIAutomation node updates the cache forcibly and run slowly.

When false is specified, UIAutomatin node avoids the update of the cache as long as possible.

“cache_update” is optional. The default value is false, which means the fast mode.

For “wait_retry_max,” specify the maximum number of retries, which are performed when

“unauthorized operation” error occurs, in decimal number.

If 0 is specified, no retry is done.

When a negative value is specified, no limit is set on the number of retries.

The “wait_retry_max” is optional. The default value is 5.

For “path_version,” select one of the following control path format versions. If omitted, it is

assumed to be $UIA.Version1.

67

Table 8-10. Control path format versions

Format version Description

$UIA.Version1 Version 1, which is compatible with the format of WinActor7.4.4

or earlier

$UIA.Version2 Version 2

For the “activate_target,” specify whether to activate the target window during execution.

When true is specified, the target control is operated after the target window is activated.

When false is specified, the target control is operated without activating the target window.

The “activate_target” is optional. The default value is true.

For the “control,” specify parameters necessary to the action as an adapter parameter list.

The “control” can be omitted.

A parameter in the adapter parameter list should be one of three parameters “scroll”,

“selection”, and “value”.

Specify each parameter as shown below. For the valid parameters for each action, see

“Table 8-11 Adapter parameter list of UIAutomation”.

Invalid parameters will be ignored with showing warning messages at the time of loading.

control = (scroll = (hscroll_amount = Scroll direction and amount identifier,

 vscroll_amount = Scroll direction and amount identifier),

 selection = (item_index = Expression, item_value = Expression),

 value = (item_value = Expression, mode = Mode identifier)

)

The result of this actions is returned to the variable specified for the “result”.

The return value will not be stored in the specified variable when this action occurs in an

assignment statement or in an expression.

The variable name for the “result” can be omitted. When the assign statement or expression

appears in the WSS output of a flowchart, the variable to set in the property for the return

value is omitted.

Example

WinActor.UIAutomation [name = "Select/GetByText/Value", comment = ""]

 (

 window_rule_ref = "Window",

 path = @"""

[{"id":"15","index":"0"}]

68

""",

 pattern = $UIA.SelectionPattern,

 action = $UIA.SelectItemByText,

 control = (selection = (item_value = 3))

);

ret = WinActor.UIAutomation [name = "Common/GetLabel", comment = ""]

 (

 window_rule_ref = "title_*Untitled-Notepad",

 path = @"""

[{"id":"Item 5","index":"0"}]

""",

 pattern = $UIA.CommonPattern,

 action = $UIA.GetName,

 control = (),

 capture = (imageid = "img_20200929092507503", x = 445, y = 10)

);

Table 8-11 Adapter parameter list of UIAutomation

pattern

Control pattern

$UIA.___

action

Action

$UIA.___

control parameters result

scroll selection value

hscroll_

amount

vscroll_

amount

item_

index

item_

value

item_

value

mode

CommonPattern GetName 〇

ExpandCollapse

Pattern

Expand

Collapse

InvokePattern Invoke

ScrollPattern IsHorizontallyS

crollable

 〇

GetHorizontalVi

ewportRatio

 〇

GetHorizontalVi

ewportSize

 〇

HorizontalScroll 〇1

IsVerticallyScrol

lable

 〇

GetVerticalView

portRatio

 〇

GetVerticalView

portSize

 〇

VerticalScroll 〇1

TwoWayScroll 〇1 〇1

69

pattern

Control pattern

$UIA.___

action

Action

$UIA.___

control parameters result

scroll selection value

hscroll_

amount

vscroll_

amount

item_

index

item_

value

item_

value

mode

SelectionPatter

n

IsMultiSelectabl

e

 〇

IsSelectionNee

ded

 〇

GetSelectionBy

Texts

 〇

GetSelectionBy

Indexes

 〇

GetSelectableIt

emNum

 〇

GetSelectableIt

ems

 〇

SelectItemByTe

xt

 〇2

SelectItemByIn

dex

 〇2

SelectionItemPa

ttern

IsSelected 〇

SelectAdditiona

lly

Unselect

SelectOne

TogglePattern Toggle

GetToggleState 〇

ValuePattern IsReadOnly 〇

GetValue 〇

SetValue 〇3 〇4

UnknownPatter

n

Unknown

〇1 default $UIA.NoAmount 、 〇2 default 0、 〇3 default 0、

〇4 default $UIA.ModeNormal 、

Identifiers of “Control pattern” and “Action” will be prefixed with “$UIA.”

 UIAutomation library

The adapter actions listed on the “Table 8-12” are frequently used operations in UIAutomation.

The control patterns and the actions of those adapter actions are fixed.

70

The function of each adapter action is the same as that of the UIAutomnation adapter action

with the same pair of the control pattern and the action.

WinActor.Adapter action name Preamble

 (

 window_rule_ref = Window_rule WinID name,

 path = Control path JSON-format string,

 expand_variable = true / false, // whether to expand embedded variables or not

 use_wildcard = true / false, // whether to enable ambiguous specification with ‘*’

 wait_setting = Timeout setting,

 wait_timeout = Timeout, // milliseconds

 wait_timeout_period = Wait condition,

 cache_update = true / false, // Forced update flag of the cache, Default: false

 wait_retry_max = Maximum number of retries,

 path_version = $UIA.Version2, // or $UIA.Version1

 control = Control spec,

 result = Variable name to receive the result,

 capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

The control pattern and the action set for each adapter action is shown on the table below.

Each value of control patterns and actions is fixed to the value on the table, and cannot be

specified.

Table 8-12 Control pattern and Action of UIAutomation libraries

Adapter action name Control pattern Action

UiaExpandMenu $UIA.ExpandCollapsePattern $UIA.Expand

UiaCollapseMenu $UIA.ExpandCollapsePattern $UIA.Collapse

UiaClick $UIA.InvokePattern $UIA.Invoke

UiaGetItemTextInList $UIA.SelectionPattern $UIA.GetSelectionByTexts

UiaGetItemIndexInList $UIA.SelectionPattern $UIA.GetSelectionByIndexes

UiaGetAllItemTextInList $UIA.SelectionPattern $UIA.GetSelectableItems

UiaSelectItemTextInList $UIA.SelectionPattern $UIA.SelectItemByText

UiaSelectItemIndexInList $UIA.SelectionPattern $UIA.SelectItemByIndex

UiaSelectTab $UIA.SelectionItemPattern $UIA.SelectOne

UiaSelectRadioButton $UIA.SelectionItemPattern $UIA.SelectOne

UiaGetText $UIA.ValuePattern $UIA.GetValue

UiaSetText $UIA.ValuePattern $UIA.SetValue

UiaSetChecked $UIA.TogglePattern $UIA.SetChecked

For other parameters, see “8.1.11 UIAutomation.”

71

 UIAutomation dump

WinActor.UiaDump Preamble

 (

 window_rule_ref = Window_rule WinID name,,

 output_filename = Filename or Variable name,

 wait_setting = Timeout option,

 wait_timeout = Timeout period, // milliseconds

 capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

No value is returned.

For "output_filename," specify a filename string to output the dump result or a variable name

that stores a filename.

Table 8-13. Sources of the timeout period

Item type Description

$UIADUMP.WaitSettingOption The timeout is set in the “Option” dialog.

$UIADUMP.WaitSettingScenario The timeout is set in the “Scenario information” window.

$UIADUMP.WaitSettingNode The timeout is set for “wait_timeout” in the “Property” pane.

“wait_setting” is optional. ‘$UIADUMP.WaitSettingScenario’ is the default.

For “wait_timeout”, give a timeout period in milliseconds or the variable that store a timeout

period. The timeout period should be in the range of 100 to 3,600,000. If the specified period

is out of the range, a warning message is displayed, and the nearer of the two values 100

and 3,600,000 is used instead.

If an anonymous identifier ‘’ (two single quotes) is specified as a variable name, 10,000 is

used as the timeout period.

“wait_timeout” is optional. The default value is 10,000.

When ‘$UIADUMP.WaitSettingOption’ or ‘$UIADUMP.WaitSettingScenario’ is specified for

the “wait_setting,” the value specified for “wait_timeout” is not used. The “wait_timeout”

property of a node is output to the .wss file from WinActor only when ‘Use this ”Property”’ is

selected for “Timeout setting” in the “Property” pane of the node.

72

 Automatic recording (IE)

 IE mode recording – Click

WinActor.ClickIE8 Preamble

 (

 window_rule_ref = Window_rule WinID name,

 control = (Parameter name<check> = value, ...),

 wait_setting = Timeout option,

 wait_timeout = Timeout period, // milliseconds

 capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

No value is returned.

For “wait_setting”, give an option to indicate a source of the timeout period for the IE action

while running the scenario. The option is one of the followings.

Table 8-14. Sources of the timeout period

Item type Description

$IE.WaitSettingOption The timeout is set in the “Option” dialog.

$IE.WaitSettingScenario The timeout is set in the “Scenario information” window.

$IE.WaitSettingNode The timeout is set for “wait_timeout” in the “Property” pane.

“wait_setting” is optional. ‘$IE.WaitSettingScenario’ is the default.

For “wait_timeout,” give a timeout period in milliseconds or the variable that store a timeout

period. The timeout period should be in the range of 100 to 3,600,000. If the specified value

is out of the range, a warning message is displayed, and he nearer of the two values 100

and 3,600,000 is used instead.

If an anonymous identifier ‘’ (two single quotes) is specified as a variable name, 10,000 is

used as the timeout period.

“wait_timeout” is optional. 10,000 is the default value.

When either ‘$IE.WaitSettingOption’ or ‘$IE.WaitSettingScenario’ is specified for

“wait_setting”, the setting in “wait_timeout” is not used.

The “wait_timeout” property of a node is output to the .wss7 file from WinActor only when

‘Use this “Property”’ is selected for “Timeout setting” in the “Property” pane of the node.

For "control," specify a parameter name for identify the target element. A parameter name

including spaces, such as "frame index" for example, should be enclosed in quotes.

"<check>" attached to "Parameter name" of "control" is for specifying check box status of the

Details tab displayed in the property of a node recorded in the IE mode.

<true> for checked and <false> for unchecked.

73

Any parameter names can be omitted.

The parameter names are as follows. The attributes of "control" for the IE mode recording is

the same for the actions described below.

Table 8-15. Parameter names for Click

Parameter name Description

tag Specify an HTML tag name of the target element by entering a value or

with a variable. A value should be a string.

'frame index' Specify a serial number assigned to the target frame in a document by

entering a value or with a variable. A value should be a number.

'tag index' Specify a serial number assigned to the target element in a frame by

entering a value or with a variable. A value should be a number.

ie_control_name Specify a name attribute value of the target element by entering a value

or with a variable. A value should be a string.

type Specify a type attribute value of the target element by entering a value

or with a variable. A value should be a string.

id Specify an id attribute value of the target element by entering a value or

with a variable. A value should be a string.

value Specify a value attribute value of the target element by entering a value

or with a variable. A value should be a string.

 IE mode recording – Set Text

WinActor.SetTextIE8 Preamble

 (

 window_rule_ref = Window_rule WinID name,

 control = (Parameter name<check> = value, ...),

 value = String or variable name,

 wait_setting = Timeout option,

 wait_timeout = Timeout period, // millisecons

 capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

No value is returned.

For "value," specify a string to be set or a variable name that stores a string.

A constant of the "value" will be converted to a string even if it is a number.

When you do not set "value," specify the anonymous identifier '' (two single quotes) in "value."

If you specify "" (two double quotes), it means that you specify an empty string.

For “wait_setting” and “wait_timeout,” see the descriptions in “8.2.1 IE mode recording –

Click.”

74

 IE mode recording – Select Item in List

WinActor.SelectListIE8 Preamble

 (

 window_rule_ref = Window_rule WinID name,

 control = (Parameter name<check> = value, ...),

 value = Expression or variable name,

 kind = Item type,

 wait_setting = Timeout option,

 wait_timeout = Tmeout period, // milliseconds

 capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

No value is returned.

For "kind," specify the item type $SelectListIE8.index or $SelectListIE8.text.

Table 8-16. Item types in the Select Item in List

Item type Description

$SelectListIE8.index Selects an item in a list by specifying a zero-based index

$SelectListIE8.text Selects an item in a list by a string displayed in the list

For "value," specify an expression that results in a value for selecting a list box or a variable

name that stores a value.

For “wait_setting” and “wait_timeout,” see the descriptions in “8.2.1IE mode recording – Click.”

 IE mode recording – Get String

WinActor.GetTextIE8 Preamble

 (

 window_rule_ref = Window_rule WinID name,

 control = (Parameter name<check> = value, ...),

 value = Variable name to receive the result,

 wait_setting = Timeout option,

 wait_timeout = Timeout period, // milliseconds

 capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

The result is returned to the variable specified in "value."

If WinActor.GetTextIE8 appears in an assignment or expression, the result will not be stored

in the variable. Specifying the variable to receive the result is optional. When the assign

75

statement or expression appears in the WSS output of a flowchart, the variable to set in the

property for the return value is omitted.

For “wait_setting” and “wait_timeout,” see the descriptions in “8.2.1 IE mode recording –

Click.”

 IE mode recording – Get Item in List

WinActor.GetListIE8 Preamble

 (

 window_rule_ref = Window_rule WinID name,

 control = (Parameter name<check> = value, ...),

 value = Variable name to receive the result,

 kind = Item type,

 wait_setting = Timeout option,

 wait_timeout = Timeout period, // milliseconds

 capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

The result is returned to the variable specified in "value."

If WinActor.GetListIE8 appears in an assignment or expression, the result will not be stored

in the variable. Specifying the variable to receive the result is optional. When the assign

statement or expression appears in the WSS output of a flowchart, the variable to set in the

property for the return value is omitted.

For "kind," specify the item type $GetListIE8.index or $GetListIE8.text.

Table 8-17. Item types in Get Item in List

Item type Description

$GetListIE8.index Gets an index of a selected element in a list

$GetListIE8.text Gets a name of a selected element in a list

For “wait_setting” and “wait_timeout,” see the descriptions in “8.2.1 IE mode recording –

Click.”

 IE mode recording – Get Check State

WinActor.GetCheckIE8 Preamble

 (

 window_rule_ref = Window_rule WinID name,

 control = (Parameter name<check> = value, ...),

 value = Variable name to receive the result,

76

 wait_setting = Timeout option,

 wait_timeout = Timeout period, // milliseconds

 capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

True or false is returned to the variable specified in "value."

If WinActor.GetCheckIE8 appears in an assignment or expression, the result will not be

stored in the variable. Specifying the variable to receive the result is optional. When the

assign statement or expression appears in the WSS output of a flowchart, the variable to set

in the property for the return value is omitted.

For “wait_setting” and “wait_timeout,” see the descriptions in “8.2.1 IE mode recording –

Click.”

 IE mode recording – Get Enable/Disable State

WinActor.GetEnableIE8 Preamble

 (

 window_rule_ref = Window_rule WinID name,

 control = (Parameter name<check> = value, ...),

 value = Variable name to receive the result,

 wait_setting = Timeout option,

 wait_timeout = Timeout period, // milliseconds

 capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

True or false is returned to the variable specified in "value."

If WinActor.GetEnableIE8 appears in an assignment or expression, the result will not be

stored in the variable. Specifying the variable to receive the result is optional. When the

assign statement or expression appears in the WSS output of a flowchart, the variable to set

in the property for the return value is omitted.

For “wait_setting” and “wait_timeout,” see the descriptions in “8.2.1 IE mode recording –

Click.”

 IE mode recording – Get Value in Table

WinActor.GetTableinfoIE8 Preamble

 (

 window_rule_ref = Window_rule WinID name,

 control = (Parameter name<check> = value, ...),

 get_tableinfo_mode = Get mode,

 valuerow = Specify a row number,

 valuecolumn = Specify a column number,

77

 result = Variable name to receive the result,

 file = Filename string or variable name that stores a filename,

 wait_setting = Timeout option,

 wait_timeout = Timeout period, // milliseconds

 capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

For "get_tableinfo_mode," specify one of the following get modes.

Table 8-18. Get modes for Get Value in Table

Get mode Description

$IEGetTableInfo.GetCell Gets a value in a cell

$IEGetTableInfo.ExistCell Checks the cell existence (true/false)

$IEGetTableInfo.GetRow Gets the number of rows

$IEGetTableInfo.GetColumn Gets the number of columns

$IEGetTableInfo.GetAll Gets all values in a table

When the get mode is $IEGetTableInfo.GetCell or $IEGetTableInfo.ExistCell, specify a

numeric value of a row number or a variable name that stores a row number in "valuerow,"

and specify a numeric value of a column number or a variable name that stores a column

number in "valuecolumn."

If $IEGetTableInfo.GetAll is specified for the get mode, the result will be written to a file

specified in "file" in CSV format.

If other than $IEGetTableInfo.GetAll is specified for the get mode, the result will be returned

to a variable specified in "result."

If WinActor.GetTableinfoIE8 appears in an assignment or expression, the result will not be

stored in the variable. Specifying the variable to receive the result is optional. When the

assign statement or expression appears in the WSS output of a flowchart, the variable to set

in the property for the return value is omitted.

For “wait_setting” and “wait_timeout,” see the descriptions in “8.2.1 IE mode recording –

Click.”

 IE mode recording – Get All Items in List

WinActor.GetAllListIE8 Preamble

 (

 window_rule_ref = Window_rule WinID name,

 control = (Parameter name<check> = value, ...),

 file = Variable name or filename,

78

 wait_setting = Timeout option,

 wait_timeout = Timeout period, // milliseconds

 capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

No value is returned.

For "file," specify a filename string to output the result or a variable name that stores a

filename.

For “wait_setting” and “wait_timeout,” see the descriptions in “8.2.1 IE mode recording –

Click.”

 Action, User, Variable

 Image Matching

WinActor.ImageMatch [_OriginalID_f63cb690ce1d = image ID number]

 (

 window_rule_ref = Window_rule WinID name,

 targetrange = (x = X-coordinate, y = Y-coordinate, width = width, height = height),

 // Image search range

 rawtargetrange = (x = X-coordinate, y = Y-coordinate, width = width, height = height),

 // Rectangular range for recording mouse cursor

 mousecoordinate = (enable = true / false, x = X-coordinate, y = Y-coordinate),

 // Mouse action coordinates

 mouseaction = Mouse action,

 scale = Scale, // Scale

 selectshape = Rectangle / Ellipse mode, // Red-framed matching mode: Rectangle or Ellipse

 similarity = Match ratio, // 0-100 %

 timeout = Timeout time, // Milliseconds

 searchrange = (enable = true / false , x = X-coordinate, width = width, y = Y-coordinate, height

= height, startpoint= origin, x_coordinate = x-coordinate value, y_coordinate = y-coordinate value),

 realtime = true / false, // true when loading matching images on execution

 realtimefile = File path string or variable name,

 // Filename or folder name when realtime = true

 useredframe = true / false, // true when using the red-framed reference image

 // and the path-specified matching images

 pathspecified = File / Folder, // How to specify path-specified matching image files

 imagesplit = true / false, // true for subdivision matching

 value = Variable name to receive the result,

 capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

79

The "_OriginalID_f63cb690ce1d" attribute of the preamble specifies the ID that identifies the

image stored in WinActor, so do not change it.

You can add "comment" and "name" to the preamble.

The image file needs to be edited (changed or added) in WinActor.

The file will not be replaced even if you rename it in WSS.

Specifying “ selectshape” is optional. If omitted, it is assumed to be the Rectangle mode.

When loading matching images on execution by specifying “realtime = true” and

“useredframe = true,” both the red-framed reference image and the path-specified matching

images are used. Specifying “useredframe” is optional. The default value is false. Although

“realtime = false” and “useredframe = true” can be specified simultaneously, only the red-

framed reference image is used in that case.

Specifying “pathspecified” is optional. If omitted, it is assumed to be the File.

If the mouse action is "Matching only," the result will be returned to the variable specified in

"value."

If WinActor.ImageMatch appears in an assignment or expression, the result will not be stored

in the variable. Specifying the variable to receive the result is optional. When the assign

statement or expression appears in the WSS output of a flowchart, the variable to set in the

property for the return value is omitted.

For "mouseaction," specify one of the following mouse actions.

Table 8-19. Mouse actions for Image Matching

Mouse action Description

$ImageMatch.Check Matching only

$ImageMatch.LeftClick Left button click

$ImageMatch.RightClick Right button click

$ImageMatch.LeftDouble Left button double-click

$ImageMatch.RightDouble Right button double-click

$ImageMatch.Move Mouse cursor move

$ImageMatch.LeftTriple Left button triple-click

$ImageMatch.RightTriple Right button triple-click

$ImageMatch.LeftClickDrag Holds left button and drags to the matched position

$ImageMatch.RightClickDrag Holds right button and drags to the matched position

80

For "scale," specify one of the following scales.

Table 8-20. Scales for Image Matching

Scale Description

$ImageMatch.Same 1x

$ImageMatch.Half 1/2

$ImageMatch.Quarter 1/4

For "selectshape," specify one of the following shape modes.

Table 8-21. Shape modes for Image Matching

Shape mode Description

$ImageMatch.SelectShape_Rectangle Rectangle

$ImageMatch.SelectShape_Ellipse Ellipse

For "startpoint," specify one of the following origins.

Table 8-22. Origins for Image Matching

Origin Description

$ImageMatch.StartPoint_LeftTop Upper left

$ImageMatch.StartPoint_LeftBottom Lower left

$ImageMatch.StartPoint_RightTop Upper right

$ImageMatch.StartPoint_RightBottom Lower right

For "x_coordinate" and "y_coordinate," specify one of the following coordinate values.

Table 8-23. Coordinate values for Image Matching

Coordinate value Description

$ImageMatch.Coordinate_Direct Coordinates are specified in pixels

$ImageMatch.Coordinate_Percent Coordinates are specified in percentage

For "pathspecified," specify one of the following path-specified matching image files.

Table 8-24. Path-specified matching image files for Image Matching

Path-specified matching image files Description

$ImageMatch.Path_File File path

81

Path-specified matching image files Description

$ImageMatch.Path_Folder Folder path

 Contour Matching

WinActor.OutlineMatch [_OriginalID_f63cb690ce1d = image ID number]

 (

 window_rule_ref = Window_rule WinID name,

 targetrange = (x = X-coordinate, y = Y-coordinate, width = width, height = height),

 // Image search part

 mousecoordinate = (enable = true / false, x = X-coordinate, y = Y-coordinate),

 // Mouse action coordinates

 mouseaction = Mouse action,

 precision = Precision,

 scale = Scale,

 timeout = Timeout time, // Milliseconds

 searchrange = (enable = true / false , x = X-coordinate, width = width, y = Y-coordinate, height

= height, startpoint= origin, x_coordinate = x-coordinate value, y_coordinate = y-coordinate value),

 realtime = true / false, // true when loading matching images on execution

 realtimefile = File path string or variable name,

 // Specify a filename when realtime = true

 useredframe = true / false, // true when using the red-framed reference image

 // and the path-specified matching images

 imagesplit = true / false, // true for subdivision matching

 pathspecified = File / Folder, // How to specify path-specified matching image files

 value = Variable name to receive the result,

 capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

The "_OriginalID_f63cb690ce1d" attribute of the preamble specifies the ID that identifies the

image stored in WinActor, so do not change it.

You can add "comment" and "name" to the preamble.

The image file needs to be edited (changed or added) in WinActor.

The file will not be replaced even if you rename it in WSS.

When loading matching images on execution by specifying “realtime = true” and

“useredframe = true,” both the red-framed reference image and the path-specified matching

images are used. Specifying “useredframe” is optional. The default value is “false.” Although

“realtime = false” and “useredframe = true” can be specified simultaneously, only the red-

framed reference image is used in that case.

Specifying “pathspecified” is optional. If omitted, it is assumed to be the File.

82

If the mouse action is "Matching only," the result will be returned to the variable specified in

"value."

If WinActor.OutlineMatch appears in an assignment or expression, the result will not be

stored in the variable. Specifying the variable to receive the result is optional. When the

assign statement or expression appears in the WSS output of a flowchart, the variable to set

in the property for the return value is omitted.

For "mouseaction," specify one of the following mouse actions.

Table 8-25. Mouse actions for Contour Matching

Mouse action Description

$OutlineMatch.Check Matching only

$OutlineMatch.LeftClick Left button click

$OutlineMatch.RightClick Right button click

$OutlineMatch.LeftDouble Left button double-click

$OutlineMatch.RightDouble Right button double-click

$OutlineMatch.Move Mouse cursor move

$OutlineMatch.LeftTriple Left button triple-click

$OutlineMatch.RightTriple Right button triple-click

$OutlineMatch.LeftClickDrag Holds left button and drags to the matched position

$OutlineMatch.RightClickDrag Holds right button and drags to the matched position

For "precision," specify one of the following precisions.

Table 8-26. Precisions for Contour Matching

Precision Description

$OutlineMatch.LowPrecision Low (speed)

$OutlineMatch.MiddlePrecision Middle (standard)

$OutlineMatch.HighPrecision High (precision)

For "scale," specify one of the following scales.

Table 8-27. Scales for Contour Matching

Scale Description

$OutlineMatch.Same 1x

$OutlineMatch.Half 1/2

$OutlineMatch.Quarter 1/4

83

For "startpoint," specify one of the following origins.

Table 8-28. Origins for Contour Matching

Origin Description

$OutlineMatch.StartPoint_LeftTop Upper left

$OutlineMatch.StartPoint_LeftBottom Lower left

$OutlineMatch.StartPoint_RightTop Upper right

$OutlineMatch.StartPoint_RightBottom Lower right

For "x_coordinate" and "y_coordinate," specify one of the following coordinate values.

Table 8-29. Coordinate values for Contour Matching

Coordinate value Description

$OutlineMatch.Coordinate_Direct Coordinates are specified in pixels

$OutlineMatch.Coordinate_Percent Coordinates are specified in percentage

For "pathspecified," specify one of the following path-specified matching image files.

Table 8-30. Path-specified matching image files for Image Matching

Path-specified matching image files Description

$OutlineMatch.Path_File File path

$OutlineMatch.Path_Folder Folder path

 OCR Matching

WinActor.OCRMatch [_OriginalID_f63cb690ce1d = image ID number]

 (

 window_rule_ref = Window_rule WinID name,

 targetrange = (x = X-coordinate, y = Y-coordinate, width = width, height = height),

 // Image search part

 mousecoordinate = (enable = true / false, x = X-coordinate, y = Y-coordinate),

 // Mouse action coordinates

 mouseaction = Mouse action,

 timeout = Timeout time, // Milliseconds

 searchrange = (enable = true / false , x = X-coordinate, width = width, y = Y-coordinate, height

= height, startpoint= origin, x_coordinate = x-coordinate value, y_coordinate = y-coordinate value),

 ocrmatchingtext = Matching string,

 value = Variable name to receive the result,

84

 capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

The "_OriginalID_f63cb690ce1d" attribute of the preamble specifies the ID that identifies the

image stored in WinActor, so do not change it.

You can add "comment" and "name" to the preamble.

The image file needs to be edited (changed or added) in WinActor.

The file will not be replaced even if you rename it in WSS.

If the mouse action is "Matching only," the result will be returned to the variable specified in

"value."

If WinActor.OCRMatch appears in an assignment or expression, the result will not be stored

in the variable. Specifying the variable to receive the result is optional. When the assign

statement or expression appears in the WSS output of a flowchart, the variable to set in the

property for the return value is omitted.

For "mouseaction," specify one of the following mouse actions.

Table 8-31. Mouse actions for OCR Matching

Mouse action Description

$OCRMatch.Check Matching only

$OCRMatch.LeftClick Left button click

$OCRMatch.RightClick Right button click

$OCRMatch.LeftDouble Left button double-click

$OCRMatch.RightDouble Right button double-click

$OCRMatch.Move Mouse cursor move

$OCRMatch.LeftTriple Left button triple-click

$OCRMatch.RightTriple Right button triple-click

$OCRMatch.LeftClickDrag Holds left button and drags to the matched position

$OCRMatch.RightClickDrag Holds right button and drags to the matched position

For "startpoint," specify one of the following origins.

Table 8-32. Origins for OCR Matching

Origin Description

$OCRMatch.StartPoint_LeftTop Upper left

$OCRMatch.StartPoint_LeftBottom Lower left

$OCRMatch.StartPoint_RightTop Upper right

85

Origin Description

$OCRMatch.StartPoint_RightBottom Lower right

For "x_coordinate" and "y_coordinate," specify one of the following coordinate values.

Table 8-33. Coordinate values for OCR Matching

Coordinate value Description

$OCRMatch.Coordinate_Direct Coordinates are specified in pixels

$OCRMatch.Coordinate_Percent Coordinates are specified in percentage

 Wait for Window Status

WinActor.WindowStateWait Preamble

 (

 window_rule_ref = Window_rule WinIDname,

 win_state = Expected status,

 state = Wait type,

 timeout = Timeout time,

 // Milliseconds Effective when $Window.WaitFor is specified in "Wait type"

 value = Variable name to receive the result,

 capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

For "win_state," specify one of the following expected status.

Table 8-34. Expected status for Wait for Window Status

Expected status Description

$Window.Front Window is at the front

$Window.Behind Window is not at the front

$Window.Enable Window is enabled

$Window.Disable Window is disabled

$Window.Appear Window is shown

$Window.Disappear Window is hidden

For "state," specify one of the following wait types.

86

Table 8-35. Wait types for Wait for Window Status

Wait type Description

$Window.WaitFor Waits until timeout

$Window.CheckOnly Gets status only

True or false is returned to the variable specified in "value."

If WinActor.WindowStateWait appears in an assignment or expression, the result will not be

stored in the variable. Specifying the variable to receive the result is optional. When the

assign statement or expression appears in the WSS output of a flowchart, the variable to set

in the property for the return value is omitted.

 Wait for Time

WinActor.TimerWait Preamble

 (

 mode = Mode,

 timeout = Timeout time,

 // Milliseconds or variable name, when the mode is $TimerWait.Sleep

 wait_time = Wait time,

 // String or variable name, when the mode is $TimerWait.Until

 check_time = Check time,

 // String or variable name, when the mode is $TimerWait.Check

 check_value = Variable name to receive the check result,

 date_format = Date format,

 timezone = Time zone

)

For "mode," specify one of the following modes:

Table 8-36. Modes for Wait for Time

Mode Description

$TimerWait.Sleep Waits for the specified time

$TimerWait.Until Waits until the specified time

$TimerWait.Check Checks if the specified time comes

For "date_format," specify one of the following or the date format string allowed by WinActor.

87

Table 8-37. Date formats for Wait for Time

Date format Description

$TimerWait.ScenarioInfoDateFormat Specifies a format on the Scenario information

property

$TimerWait.OptionInfoDateFormat Specifies a format on the Option dialog

For "timezone," specify one of the following or the time zone string allowed by WinActor.

Table 8-38. Time zones for Wait for Time

Time zone Description

$TimerWait.ScenarioInfoTimeZone Specifies a format on the Scenario information

property

$TimerWait.OptionInfoTimeZone Specifies a format on the Option dialog

$TimerWait.DefaultTimeZone OS default

If "mode" is to "check if the specified time comes," true or false will be returned to the variable

specified in "check_value."

For details, see "Time format" under the "Wait for Time" node in "WinActor Operation

Manual."

If WinActor.TimerWait appears in an assignment or expression, the result will not be stored

in the variable. Specifying the variable to receive the check result is optional. When the assign

statement or expression appears in the WSS output of a flowchart, the variable to set in the

property for the check result is omitted.

 Send Text

WinActor.SendText Preamble

 (

 window_rule_ref = Window_rule WinIDname,

 control = (instance<check> = expression, text<check> = expression, position<check> =

position),

 value = String or variable name,

 sendcr = true or false,

 verify = true or false,

 capture = (imageid = image ID string, x = mouse coordinate X, y = mouse coordinate Y)

)

No value is returned.

88

For "value," specify a string to be sent or a variable name that stores the sent contents. When

you do not set "value," specify the anonymous identifier ''.

A constant of the "value" attribute will be converted to a string even if it is a number.

For "sendcr" and "verify," specify true or false. If omitted, it is assumed that false is specified.

A warning will be issued when a value other than true or false is specified, and the process

will continue assuming that false is specified.

The meanings of "sendcr" and "verify" are as follows.

Table 8-39. "sendcr" and "verify"

Action Description

sendcr Sends the return key

verify Verifies a sent result (Pauses in case of verification error)

 Execute Command

WinActor.Launcher Preamble

 (

 command = Command name or variable name that stores the command name,

 option = Option string or variable name that stores the option string,

 execute_mode = Execution mode,

 set_value = Variable name to receive the result

)

For "execute_mode," specify one of the following execution modes.

Table 8-40. Execution modes for Execute Command

Execution mode Description

$Launcher.Single Asynchronous execution (single instance)

$Launcher.Multi Asynchronous execution

$Launcher.WaitForEnd Synchronous execution (receives result)

If "execute_mode = $Launcher.WaitForEnd” is specified, the result value will be returned to

the variable specified for "set_value."

If WinActor.Launcher appears in an assignment or expression, the result will not be stored in

the variable. Specifying the variable to receive the result is optional. When the assign

statement or expression appears in the WSS output of a flowchart, the variable to set in the

property for the return value is omitted.

89

 Run Script

WinActor.Script Preamble

 (

 window_rule_ref = Window_rule WinID name,

 environment_type = Variable sharing type,

 library_provider = Library provider (string),

 library_id = Library ID (string),

 library_version = Library version (string),

 library_original_name = Library name (string),

 edit_lock = true or false,

 Script parameter description = value or variable name depending on the description,

// Arrange this line by the number of parameters

 /*** Note ***/

 note = @"""

Annotation description

""",

 /*** Note End ***/

 /*** Script ***/

 script = @"""

Script description

"""

 /*** Script End ***/

)

Annotation and script should be written between the line that ends with @""" and the line that

starts with """.

The script parameter description should be enclosed in '' (two single quotes) and used as an

identifier.

"Parameter name" is a name for exchanging a value with WinActor in the script description.

Table 8-41. Script parameter descriptions for Run Script

Script parameter description Description

'!Parameter_name!' Variable name or value

'!Parameter_name|Item1,Item2,Item3...!' Pull-down menu

'$Parameter_name$' Variable name

'@Parameter_name@' WinID name

'!Parameter_name|FILE|!' File selection dialog

'!Parameter_name|FILE:EXCEL|!' File selection dialog (Excel)

90

Script parameter description Description

'!Parameter_name|FILE:ZIP|!' File selection dialog (zip)

'!Parameter_name|FILE:CSV|!' File selection dialog (csv)

'!Parameter_name|FILE:IMG|!' File selection dialog (image)

For "environment_type," specify one of the following variable sharing types:

Table 8-42. Variable sharing types for Run Script

Variable sharing type Description

$Script.EnvIndependent Sets variables for each script

$Script.EnvShared Shares variables with other scripts

The Run Script node of each sample library has version information parameters

(library_provider, library_id, library_version, library_original_name). These parameters

cannot be changed in WSS.

If "edit_lock" is omitted, it will be assumed that false is specified.

Regarding the Run Script node with its script locked (edit_lock) in WinActor, its script

description will not be displayed in WSS and cannot be changed.

No value is returned.

Example

WinActor.Script [name = "Countdown", comment = ""]

(

 window_rule_ref = "",

 environment_type = $Script.EnvIndependent,

 library_provider = "NTT Advanced Technology Corporation ",

 library_id = "AT05001L",

 library_version = "1.0.0",

 library_original_name = "Countdown",

 edit_lock = false,

 '$Counter$' = a,

 /*** Note ***/

 note = @"""

Counts down a number of the specified variable.

Counter: Specify a variable name of the countdown target.

""",

 /*** Note End ***/

91

 /*** Script ***/

 script = @"""

c = GetUMSVariable($Counter$)

ci = int(c)

ci = ci - 1

SetUMSVariable $Counter$, ci

"""

 /*** Script End ***/

);

 Run Python

WinActor.PythonScript Preamble

 (

 window_rule_ref = Window_rule WinID name,

 environment_type = Variable sharing type,

 library_provider = Library provider (string),

 library_id = Library ID (string),

 library_version = Library version (string),

 library_original_name = Library name (string),

 edit_lock = true or false,

 Script parameter description = value or variable name depending on the description,

// Arrange this line by the number of parameters

 /*** Note ***/

 note = @"""

Annotation description

""",

 /*** Note End ***/

 /*** Script ***/

 script = @"""”

PythonScript description

"""”

 /*** Script End ***/

)

Annotation should be written between the line that ends with @""" , which includes three

double quotes, and the line that starts with """, which is three double quotes.

Python script should be written between the line that ends with @""”" , which includes four

double quotes, and the line that starts with ""”", which is four double quotes, to avoid

interfering with the other part of the Python script.

92

The script parameter description should be enclosed in ' ' (single quotes) and used as an

identifier.

"Parameter name" is a name for exchanging a value with WinActor in the Python script

description. The descriptions are the same as listed in the “Table 8-41. Script parameter

descriptions for Run Script.”

Table 8-43. Script parameter descriptions for Run Python

Script parameter description Description

'!Parameter_name!' Variable name or value

'!Parameter_name|Item1,Item2,Item3...!' Pull-down menu

'$Parameter_name$' Variable name

'@Parameter_name@' WinID name

'!Parameter_name|FILE|!' File selection dialog

'!Parameter_name|FILE:EXCEL|!' File selection dialog (Excel)

'!Parameter_name|FILE:ZIP|!' File selection dialog (zip)

'!Parameter_name|FILE:CSV|!' File selection dialog (csv)

'!Parameter_name|FILE:IMG|!' File selection dialog (image)

For "environment_type," specify one of the following variable sharing types.

Table 8-44. Variable sharing types for Run Python

Variable sharing type Description

$Script.EnvIndependent Sets variables for each Python script

$Script.EnvShared Shares variables with other Python scripts

The Run Python node of each sample library has version information parameters

(library_provider, library_id, library_version, library_original_name). These parameters

cannot be changed in WSS.

If "edit_lock" is omitted, it will be assumed that false is specified.

Regarding the Run Python node with its script locked (edit_lock) in WinActor, its script

description will not be displayed in WSS and cannot be changed.

No value is returned.

Example

WinActor.PythonScript [name = "Countdown", comment = ""]

93

(

 window_rule_ref = "",

 environment_type = $Script.EnvIndependent,

 library_provider = " ",

 library_id = "",

 library_version = "",

 library_original_name = "",

 edit_lock = false,

 ‘!String1!’ = “first”,

 ‘!String2!’ = “second”,

 '$ConcatenatedResult$' = result_py, /*** Note ***/

 note = @"""

Concatenates two strings

""",

 /*** Note End ***/

 /*** Script ***/

 script = @"""”

result = "".join([!String1!, !String2!])

vm_result = $ConcatenatedResult$

winactor.set_variable(vm_result, result)

"""”

 /*** Script End ***/

);

 Excel Operation

WinActor.Excel Preamble

 (

 operation = Excel operation,

 file_path = Excel file path or variable name,

 // Required for any operation

 sheet = Sheet name or variable name,

 // Required when the operation is to set or get a value

 cell = Cell position or variable name,

 // Required when the operation is to set or get a value

 source_value = Value to be set or variable name,

 // Required when the operation is to set a value

 target_value = Variable name to receive the result,

 // Required when the operation is to get a value

 macro = Macro name or variable name

 // Required when the operation is to run a macro

)

For "operation," specify one of the following Excel operations.

94

Table 8-45. Excel operations

Excel operation Description

$Excel.GetValue Gets a value

$Excel.SetValue Sets a value

$Excel.RunMacro Runs a macro

"Or variable name" means the name of a variable that stores necessary information.

If the operation is to get a value, the result will be returned to the variable specified in

"target_variable."

If WinActor.Excel appears in an assignment or expression, the result will not be stored in the

variable. Specifying the variable to receive the result is optional. When the assign statement

or expression appears in the WSS output of a flowchart, the variable to set in the property

for the return value is omitted.

 Clipboard

WinActor.Clipboard Preamble

 (

 mode = Operation,

 set_value = Expression, // Required when the operation is $ClipBoard.Set

 get_value = Variable name to receive the result

)

For "mode," specify one of the following operations.

Table 8-46. Clipboard operations

Clipboard operation Description

$ClipBoard.Set Sets a value to the clipboard

$ClipBoard.Get Gets a value from the clipboard

When setting a value to the clipboard, "get_value" can be omitted.

When getting a value from the clipboard, the value is returned to the variable specified in

"get_value," and "set_value" can be omitted.

If WinActor.Clipboard appears in an assignment or expression, the result will not be stored

in the variable. Specifying the variable to receive the result is optional. When the assign

statement or expression appears in the WSS output of a flowchart, the variable to set in the

property for the return value is omitted.

95

The following WinActor.SetToClipboard and WinActor.GetFromClipboard can be used with

less arguments and are easier to understand.

 Set To Clipboard

WinActor.SetToClipboard Preamble

 (

 String or variable name that stores contents to be set in the clipboard

)

No value is returned.

 Get From Clipboard

WinActor.GetFromClipboard Preamble

 (

 get_value = Variable name to receive the result

)

The result value is returned to the variable specified in "get_value."

If WinActor.GetFromClipboard appears in an assignment or expression, the result will not be

stored in the variable. Specifying the variable to receive the result is optional, but () are

required. When the assign statement or expression appears in the WSS output of a flowchart,

the variable to set in the property for the result is omitted.

Example

cv = WinActor.GetFromClipboard [name = "get from clipboard"] ();

 Waiting Dialog

WinActor.WaitBox Preamble

 (

 mode = Mode,

 message = Message string or variable name that stores a message

)

For "mode," specify one of the following modes:

96

Table 8-47. Modes for Waiting Dialog

Mode Description

$WaitBox.Confirm Confirmation dialog (displays OK button only)

$WaitBox.Query Inquiry dialog (displays Continue and Stop buttons)

No value is returned.

 Input Dialog

WinActor.InputBox Preamble

 (

 message = Message string or variable name that stores a message,

 value = Variable name to receive the result

)

The result is returned to the variable specified in "value."

If WinActor.InputBox appears in an assignment or expression, the result will not be stored in

the variable. Specifying the variable to receive the result is optional. When the assign

statement or expression appears in the WSS output of a flowchart, the variable to set in the

property for the return value is omitted.

A constant of the "message" attribute will be converted to a string even if it is a number.

 Selection Dialog

WinActor.SelectBox Preamble

 (

 message = Message string or variable name that stores a message,

 items = Option list,

 value = Variable name to receive the result

)

Specify "option list" of "items" by enclosing option strings in parentheses.

You can use a string or a constant that stores a string.

Numbers are treated as strings.

Example:

items = ("red", "blue", "white"),

items = (1, 2, 3),

The result is returned to the variable specified in "value."

97

If WinActor.SelectBox appears in an assignment or expression, the result will not be stored

in the variable. Specifying the variable to receive the result is optional. When the assign

statement or expression appears in the WSS output of a flowchart, the variable to set in the

property for the return value is omitted.

 Sound (Buzzer)

WinActor.Beep Preamble ()

This is to make a buzzer sound.

There is no argument.

No value is returned.

 Sound (WAVE file)

WinActor.Speaker [name = "name", comment = "comment", _OriginalID_f63cb690ce1d = 268]

 (

 selectFile = WAVE filename,

 wait = true / false // true when waiting until the playback ends

)

The "_OriginalID_f63cb690ce1d" attribute of the preamble specifies the ID that identifies the

WAVE file stored in WinActor, so do not change it.

You can add "comment" and "name" to the preamble.

The WAVE file needs to be edited (changed or added) in WinActor.

The file will not be replaced even if you rename it in WSS.

No value is returned.

 Set Variable Value

Variable name to receive the result = Expression Preamble ;

Set Variable Value is written by using an assignment statement.

You can set "comment" and "name" in the preamble.

When writing as an action:

WinActor.SetVariable Preamble (

 val = Constant expression,

 value = Variable name to receive the result

98

)

The result of a constant expression is returned to the variable specified in "value."

If WinActor.SetVariable appears in an assignment or expression, the result will not be stored

in the variable. Specifying the variable to receive the result is optional. When the assign

statement or expression appears in the WSS output of a flowchart, the variable to set in the

property for the return value is omitted.

When written by using an assignment statement, "val = " can be omitted.

Example: All of the following have the same result.

WinActor.SetVariable(val = 100, value = height);

height = WinActor.SetVariable(val = 100);

height = WinActor.SetVariable(100);

height = 100;

 Copy Variable Value

Variable name to receive the result = Expression Preamble ;

Copy Variable Value is written by using an assignment statement.

You can set "comment" and "name" in the preamble.

When writing as an action:

WinActor.CopyVariable Preamble

(

 from = Source variable name,

 to = Destination variable name,

)

The contents of the source variable is copied to the variable specified in "to."

If WinActor.CopyVariable appears in an assignment or expression, the result will not be

stored in the variable specified in "to." Specifying "to" is optional.

When written by using an assignment statement, "from = " can be omitted.

Example: All of the following have the same result.

WinActor.CopyVariable(from = height, to = width);

width = WinActor.CopyVariable(from = height);

width = WinActor.CopyVariable(height);

width = height;

99

 Get Date and Time

WinActor.GetDateTime Preamble

 (

 format = Format type,

 date_format = Date format,

 timezone = Time zone,

 value = Variable name to receive the result

)

For "format," specify one of the following format types.

Table 8-48. Format types for Get Date and Time

Format type Description

$GetDateTime.DateTime Date and time

$GetDateTime.Date Only date

$GetDateTime.Time Only time

For "date_format," specify one of the following or the date format string allowed by WinActor.

Table 8-49. Date format for Get Date and Time

Date format Description

$GetDateTime.ScenarioInfoDateFormat Specifies a format on the Scenario information

property (This date format is applied when

"date_format" is omitted)

$GetDateTime.OptionInfoDateFormat Specifies a format on the Option dialog

For "timezone," specify one of the following or the time zone string allowed by WinActor.

Table 8-50. Time zone for Get Date and Time

Time zone Description

$GetDateTime.ScenarioInfoTimeZone Specifies a time zone on the Scenario information

property (This time zone is applied when

"timezone" is omitted)

$GetDateTime.OptionInfoTimeZone Specifies a time zone on the Option dialog

$GetDateTime.DefaultTimeZone OS default

"date_format" and "timezone" can be omitted.

100

The result is returned to the variable specified in "value."

If WinActor.GetDateTime appears in an assignment or expression, the result will not be

stored in the variable. Specifying the variable to receive the result is optional. When the

assign statement or expression appears in the WSS output of a flowchart, the variable to set

in the property for the return value is omitted.

 Get Username

WinActor.GetUserName Preamble

 (

 value = Variable name to receive the result

)

The result is returned to the variable specified in "value."

If WinActor.GetUserName appears in an assignment or expression, the result will not be

stored in the variable. Specifying the variable to receive the result is optional, but () are

required. When the assign statement or expression appears in the WSS output of a flowchart,

the variable to set in the property for the result is omitted.

Example:

uname = WinActor.GetUserName [Comment = "Get username"] ();

 Four Arithmetic Operations

Four Arithmetic Operations is written by using an expression and assignment statement.

When writing as an action:

WinActor.Calculate Preamble (

 operator = Operation,

 left = Left operand of the binary operation,

 right = Right operand of the binary operation,

 value = Variable name to receive the result

)

For "operator," specify one of the following operations.

Table 8-51. Four Arithmetic Operations

Operation

$Calculate.Plus

$Calculate.Minus

$Calculate.Mul

101

Operation

$Calculate.Div

Numbers, variable names, and expressions can be written in the operands of the binary

operation.

When an expression is written, the compiler automatically generates a node for the operation

of the expression.

The operation result is returned to the variable specified in "value."

If WinActor.Calculate appears in an assignment or expression, the result will not be stored in

the variable. Specifying the variable to receive the result is optional. When the assign

statement or expression appears in the WSS output of a flowchart, the variable to set in the

property for the return value is omitted.

 Count Up

Count Up is written by using an expression and assignment statement.

When writing as an action:

WinActor.CountUP Preamble (

 value = Variable name,

 add = Incremental constant expression

)

No value is returned.

The incremental constant is added to the variable specified in "value."

If a negative value is specified for the constant, a warning will be issued in WinActor.

 Full/Half-Width Conversion

WinActor.TextConvert Preamble

 (

 operation = Operation,

 target_variable = Variable name that stores a conversion target string

)

For "operation," specify one of the following operations.

102

Table 8-52. Operations for Full/Half-Width Conversion

Operation Description

$FullHalfWidth.ToFullWidth Converts to full-width characters

$FullHalfWidth.ToHalfWidth Converts to half-width characters

No value is returned.

 Watch Events

WinActor.EventsWatch Preamble ()

This begins watching events set in Events and calls the corresponding action when an event

trigger is detected.

There is no argument.

 Register EventWatcher

WinActor.EventAdd Preamble (Events EventWatcher name)

This registers an event in Events as a EventWathcer.

Specify EventWatcher name to register as an argument.

 Cancel EventWatcher

WinActor.EventRemove Preamble (Events EventWatcher name)

This cancels an EventWatcher.

Specify EventWatcher name to cancel as an argument.

 Ignore Events

WinActor.EventsIgnore Preamble ()

This terminates watching events and begins ignoring event triggers.

There is no argument.

103

 WinActor Mail, HTTP, JSON

 Mail Reception Settings

WinActor.MailReceiveSet Preamble

 (

 mail_rule_info = Mail reception conditions,

 host_name = String or variable, // Hostname of the incoming mail server

 user = String or variable, // Username to connect to the incoming mail server

 pass = String or variable, // Password to connect to the incoming mail server

 auth_type = Authentication type, // See below

 port = Port number, // Integer value 110, etc.

 conn_time = Connection timeout, // Milliseconds 10000, etc. (10 seconds)

 cmd_time = Reception timeout, // Milliseconds 10000, etc. (10 seconds)

 mail_input = String or variable, // Mail folder

 is_del_mail = true / false, // Whether to delete received mails from server

 attach_save = true / false, // Whether to save attached files

 extention_not_save = true / false, // Space-separated, valid when extention_not_save is true

 except_extension = "*.exe *.bat *.vbs *.msi *.jar",

 // Specify attached file extensions not to save

 security_type = Secure connection type

 // See below

);

This is to configure the mail reception settings.

No value is returned.

For "auth_type," specify one of the following authentication types.

Table 8-53. Authentication types for Set Mail Reception

Authentication type Description

$MailAuth.UserPass USER/PASS

$MailAuth.APOP APOP

For "security_type," specify one of the following secure connection types.

Table 8-54. Secure connection types for Set Mail Reception

Secure connection type Description

$MailSecurity.No None

$MailSecurity.TLS_SSL POP3S

$MailSecurity.StartTLS StartTLS

104

 Mail reception conditions "mail_rule_info"

Write the conditions for receiving mails. You can write multiple conditions by separating them

with commas. Only mails that meet all the conditions will be received.

The syntax of the condition is as follows:

(item = Item, cond = Condition, value = Value)

or

(item = Item, cond = Condition, var = Variable name)

For "item ," specify one of the following items.

Table 8-55. Items for mail reception conditions

Item Description

$MailRule.To Recipient

$MailRule.From Sender

$MailRule.Subject Subject

For "cond," specify one of the following conditions:

Table 8-56. Mail reception conditions

Condition Description

$MailRule.Include Include

$MailRule.AtFirst Start with

$MailRule.AtLast End with

$MailRule.Equal Match

$MailRule.Regex Regular expression

Example: Receiving mails with "example.com" included in the sender and with "report"

included in the subject.

mail_rule_info =

 (

 (item = $MailRule.From, cond = $MailRule.Include, value = "example.com"),

 (item = $MailRule.Subject, cond = $MailRule.Include, value = "report")

),

 Receive Mail

WinActor.MailReceive Preamble

105

 (

 get_method = Reception type,

 no_receiver_mail = Operation in case of no mails,

 get_mail_num = Variable name to receive the result

)

This is to receive mails.

For "get_method," specify one of the following reception types.

Table 8-57. Reception types for Receive Mail

Reception type Description

$MailReceive.OneByOne Receives one by one

$MailReceive.GetAll Receives all mails

$MailReceive.NumOnly Receives the number of mails

For "no_receiver_mail," specify one of the following operations.

Table 8-58. Operations in case of no mails for Receive Mail

Operation in case of no mails Description

$MailReceive.Wait Waits until mails can be received

$MailReceive.Error Raises an error

$MailReceive.MailNum Returns the number of mails (zero)

The number of received mails is returned to the variable specified in "get_mail_num."

If WinActor.MailReceive appears in an assignment or expression, the result will not be stored

in the variable. Specifying the variable to receive the result is optional. When the assign

statement or expression appears in the WSS output of a flowchart, the variable to set in the

property for the return value is omitted.

 Select Mail

WinActor.MailSelect Preamble

 (

 select_type = Mail selection type,

 line_num = Variable name to store the line number of the selected mail,

 not_mail_error_return = true or false

)

106

This is to select a received mail.

For "select_type," specify one of the following mail selection types.

Table 8-59. Mail selection types for Select Mail

Mail selection type Description

$MailSelect.Top Selects the first mail

$MailSelect.NoProcessedTop Selects the first unprocessed mail

$MailSelect.ProcessedTop Selects the first processed mail

$MailSelect.Next Selects the next mail

$MailSelect.NextNoProcessed Selects the next unprocessed mail

$MailSelect.NextProcessed Selects the next processed mail

The line number of the selected mail is returned to the variable specified in "line_num."

If WinActor.MailSelect appears in an assignment or expression, the result will not be stored

in the variable. Specifying the "line_num" variable is optional. When the assign statement or

expression appears in the WSS output of a flowchart, the variable to set in the property for

the line number is omitted.

 Change Mail State

WinActor.MailStatusChg Preamble

 (

 $MailStatusChg.Processed or $MailStatusChg.NoProcessed

)

Specify $MailStatusChg.Processed or $MailStatusChg.NoProcessed in the argument.

It means to change the state to "Processed" or "Unprocessed," respectively.

No value is returned.

 Synchronize Mail Folder

WinActor.MailSync Preamble ()

This is to synchronize the Mail pane with the mail folder.

See "WinActor Mail Reception Scenario Creation Manual" for details.

There is no argument.

No value is returned.

107

 Delete Processed Mail

WinActor.MailRemoveProcessed Preamble

 (

 deleted_mail_num = Variable name to receive the result

)

The number of deleted mails is returned to the variable specified in "deleted_mail_num."

If WinActor.MailRemoveProcessed appears in an assignment or expression, the result will

not be stored in the variable. Specifying the variable to receive the result is optional. When

the assign statement or expression appears in the WSS output of a flowchart, the variable to

set in the property for the return value is omitted.

 Delete Mail

WinActor.MailRemove Preamble ()

This is to delete a selected mail.

There is no argument.

No value is returned.

 Copy Mail Information

WinActor.MailCopyClip Preamble

 (Argument)

This is to copy information of a selected mail to the clipboard.

No value is returned.

Specify one of the following in the argument.

Table 8-60. Arguments for Copy Mail Information

Argument Description

$MailCopyClip.UniqueID Unique ID

$MailCopyClip.FolderName Folder name

$MailCopyClip.Status State (unprocessed/processed)

$MailCopyClip.SendDate Sent date

$MailCopyClip.From Sender

108

Argument Description

$MailCopyClip.Subject Subject

$MailCopyClip.Body Body

$MailCopyClip.NumberOfAttached Number of attached files

 Get Attached Filename

WinActor.MailAttachName Preamble

 (

 attach_file_number = Attached file number,

 attach_file_name = Variable name to receive the filename

);

The attached filename is returned to the variable specified in "attach_file_name."

If WinActor.MailAttachName appears in an assignment or expression, the result will not be

stored in the variable. Specifying the variable to receive the filename is optional. When the

assign statement or expression appears in the WSS output of a flowchart, the variable to set

in the property for the filename is omitted.

 Get Mail Information

WinActor.MailGetInfo Preamble

 (

 uid = Variable name to receive the unique ID,

 dir = Variable name to receive the folder name,

 stat = Variable name to receive the mail state (unprocessed/processed),

 send_date = Variable name to receive the sent date,

 from = Variable name to receive the sender,

 to = Variable name to receive the recipient,

 cc = Variable name to receive the CC recipient,

 subject = Variable name to receive the subject,

 message = Variable name to receive the body,

 attachment = Variable name to receive the number of attached files

);

This is to get information of a received mail.

For items that do not require information, specify the anonymous identifier '' (two single

quotes) as a variable name or omit the item.

The information is returned to the specified variables. The result of the whole operation is not

returned.

109

 Import Mail Reception Settings

WinActor.MailReceiveImport Preamble

 (

 File path or variable name that stores a file path

)

This is to import the mail reception settings.

No value is returned.

 Gmail Reception Settings

WinActor.GmailReceiveSet Preamble

 (

 mail_rule_info = Mail reception conditions,

 conn_time = Connection timeout, // Milliseconds 10000, etc. (10 seconds)

 cmd_time = Reception timeout, // Milliseconds 10000, etc. (10 seconds)

 mail_input = String or variable, // Mail folder

 attach_save = true / false, // Whether to save attached files

 extention_not_save = true / false, // Space-separated, valid when extention_not_save is true

 except_extension = "*.exe *.bat *.vbs *.msi *.jar",

 // Specify attached file extensions not to save

);

This is to configure Gmail reception settings.

The minimum value for the connection timeout and the reception timeout is 100, and

the maximum value is 3,600,000 milliseconds.

No value is returned.

 Mail reception conditions “mail_rule_info”

Write the conditions for receiving mails. You can write multiple conditions by separating them

with commas. Only mails that meet all the conditions will be received.

The syntax of the condition is as follows:

(item = Item, cond = Condition, value = Value)

or

(item = Item, cond = Condition, var = Variable name)

For "item," specify one of the following items.

110

Table 8-61 Items for mail reception conditions

Item Description

$GmailRule.To Recipient

$GmailRule.From Sender

$GmailRule.Subject Subject

For "cond," specify one of the following conditions:

Table 8-62 Mail reception conditions

Condition Description

$GmailRule.Include Include

$GmailRule.AtFirst Start with

$GmailRule.AtLast End with

$GmailRule.Equal Match

$GmailRule.Regex Regular expression

Example: Receiving mails with a string "example.com" included in the sender and with a

string "report" included in the subject.

mail_rule_info =

 (

 (item = $MailRule.From, cond = $MailRule.Include, value = "example.com"),

 (item = $MailRule.Subject, cond = $MailRule.Include, value = "report")

),

 Receive Gmail

WinActor.GmailReceive Preamble

 (

 get_method = Reception type,

 no_receiver_mail = Operation in case of no mails,

 get_mail_num = Variable name to receive the result

)

This is to receive mails via Gmail.

For "get_method," specify one of the following reception types.

111

Table 8-63 Reception types for Receive Gmail

Reception type Description

$GmailReceive.OneByOne Receives one by one

$GmailReceive.GetAll Receives all mails

$GmailReceive.NumOnly Receives the number of mails

For "no_receiver_mail," specify one of the following operations.

Table 8-64 Operations in case of no mails for Receive Gmail

Operation in case of no mails Description

$GmailReceive.Wait Waits until mails can be received

$GmailReceive.Error Raises an error

$GmailReceive.MailNum Returns the number of mails (zero)

The number of received mails is returned to the variable specified in "get_mail_num."

If WinActor.GmailReceive appears in an assignment or an expression, the result will not be

stored in the variable. Specifying the variable to receive the result is optional. When the

assign statement or expression appears in the WSS output of a flowchart, the variable to set

in the property for the return value is omitted.

 Gmail Send Settings

WinActor.GmailSendSet Preamble

 (

 conn_time = Connection timeout, // Milliseconds 10000, etc. (10 seconds)

 cmd_time = Reception timeout, // Milliseconds 10000, etc. (10 seconds)

);

This is to configure the Gmail send settings.

The minimum value for the connection and the reception timeout is 100, and the maximum

value is 3,600,000 milliseconds.

No value is returned.

 Send Gmail

WinActor.GmailSend Preamble

 (

 recipient_name = String or variable, // Recipient’s name

 recipient_address = String or variable, // Recipient’s mail address

112

 subject = String or variable, // Subject of the mail

 body = String or variable, // Mail body

);

This is to send a mail via Gmail.

No value is returned.

 HTTP

WinActor.Http Preamble

 (

 method = Method,

 url = Server address URL string or variable name,

 server_timeout = Connection timeout, // In milliseconds

 res_timeout = Response timeout, // In milliseconds

 req_header = (Key = value or variable name, ...),

 req_body_file = File path string to store the request details or variable name,

 req_body = (Key<Type> = value or variable name, ...),

 req_use_file = true / false, // When true is specified, req_body_file is adopted.

 res_header = (Key = destination variable name, ...),

 res_body_file = Destination file path string or variable name,

 res_body = (Key = destination variable name, ...)

 res_use_file = true / false, // When true is specified, res_body_file is adopted.

 status_code = Variable name to receive the status code

)

For "method," specify one of the following:

Table 8-65. Methods for HTTP

Method

$HTTP.Get

$HTTP.Put

$HTTP.Post

$HTTP.Delete

$HTTP.Patch

Specify either "req_body_file" or "req_body." If both are specified, "req_body_file" will be

taken when “req_use_file” is true, and .”req_body” when false. If both are specified and

“req_use_file” is omitted, “req_body_file” will be taken.

113

Specify either "res_body_file" or "res_body." If both are specified, "res_body_file" will be

taken when “res_use_file” is true, and “res_body” when false.. If both are specified and

“res_use_file” is omitted, “res_body_file” will be taken.

If $HTTP.Get is specified in the method, "req_body_file" and "req_body" will be ignored.

The valid arguments (○) and ignored arguments (×) for each method are as follows.

Table 8-66. Methods and arguments for HTTP

Argument Method Description

 Get Put Post Delete Patch

req_header ○ ○ ○ ○ ○ Key = value or variable name

req_body_file × ○ ○ ○ ○ File path string to store the request

details or variable name

req_body × ○ ○ ○ ○ Key<type> = value or variable name

Converted to JSON object and sent

res_header ○ ○ ○ ○ ○ Key = destination variable name

res_body_file ○ ○ ○ ○ ○ Destination file path string or variable

name

res_body ○ ○ ○ ○ ○ Key = destination variable name

The result will be in JSON format.

For "Type," specify one of the following:

Table 8-67. Types for HTTP

Type Description

integer Integer

float Decimal

string String

object Object

array Array

boolean Boolean

null Null

The status code is returned to the variable specified in "status_code."

If WinActor.Http appears in an assignment or expression, the result will not be stored in the

variable. Specifying the variable to receive the status code is optional. When the assign

statement or expression appears in the WSS output of a flowchart, the variable to set in the

property for the return value is omitted.

For details and notes, see "HTTP" in "WinActor User Library Sample Manual."

114

 HTTP (Advanced)

WinActor.Http2 Preamble

 (

 method = Method,

 url = Server address URL string or variable name,

 proxy_mode = true / false, // Whether to use the proxy server set in option window

 response_timeout = Response timeout, // in milliseconds

 auth = true / false, // \whether to use the BASIC authentication

 auth_user = User name string or variable name,

 auth_pass = Password string or variable name,

 req_header = Request header in JSON-format string or variable name,

 req_header_file = Path name for the file that stores the request header or variable name,

 req_param_multipart = true / false, // Whether to send parameters in multipart

 req_param = Parameters in JSON-format string or variable name,

 req_param_file = Path name for the file that stores the parameters or variable name,

 req_body = Request body string,

 req_body_file = Path name for the file that stores the request body,

 req_cookie = Request header cookie in JSON-format string or variable name,

 req_cookie_file = Path name for the file that stores the request header cookie or variable name,

 req_fileupload_file = Path name for the file that stores the upload files setting or variable name,

 fileupload_info = Upload files list,

 res_header = Variable name to receive response header,

 res_header_file = Path name for the file to receive response header or variable name,

 res_header_filetype = Response header format,

 res_body = Variable name to receive response body,

 res_body_file = Path name for the file to receive response body or variable name,

 res_multipartdata_split = true / false, // Whether to split multipart data

 res_cookie = Variable name to receive response cookie,

 res_cookie_file = Path name for the file to receive response cookie or variable name,

 res_cookie_filetype = Response cookie format,

 http_version = Variable name to receive the HTTP version,

 reason_phrase = Variable name to receive the reason phrase,

 status_code = Variable name to receive the status code

)

Since many parameters exist, not selected or omitted parameters in .wss7 file are also output

as comments on the file.

Specify one of the followings for “Method.”

115

Table 8-68. Method of HTTP2

Method

$HTTP.Get

$HTTP.Put

$HTTP.Post

$HTTP.Delete

$HTTP.Patch

$HTTP.Head

The “response_timeout” is optional. The default value is 10000, which means 10 seconds.

When ‘false’ is set for “auth,” both “auth_user” and “auth_password” are optional.

For following items in each row, the parameter on either left or right side should be specified.

If the parameters on both sides are specified, the right side one is adopted.

When the parameters on both sides in the row are not necessary for the request, they are

optional.

Table 8-69. Req arguments of HTTP2

From variable or value From file

req_header req_header_file

req_param req_param_file

req_cookie req_cookie_file

req_body req_body_file

For following items in each row, the parameter on either left or right side should be specified

to store the corresponding element in the response. If the parameters on both sides are

specified, the right side one is adopted.

When the corresponding element is not necessary to store, parameters on both sides are

optional.

Table 8-70. Res arguments of HTTP2

To variable To file

res_header res_header_file

res_cookie res_cookie_file

res_body res_body_file

For “res_header_filetype” and “res_cookie_filetype,” specify $HTTP2.RawFormat or

$HTTP2.JSONFormat.

116

These parameters are optional. The default value for them is $HTTP2.RawFormat.

Table 8-71. Response format of HTTP2

Response format Description

$HTTP2.RawFormat Separated by new lines

$HTTP2.JSONFormat JSON format

For the upload files, specify either “fileupload_info” or “req_fileupload_file.”

If both of them are specified, “req_fileupload_file” is adopted.

The syntax of “fileupload_info” is as follows. List triplets of a filename, a form name and a

content type for all the files to upload.

fileupload_info = (

 (filename = Path of a file or variable name,

name = String or variable name,

content_type = String or variable name),

 (filename = Path of a file or variable name,

name = String or variable name,

content_type = String or variable name),

 ...

)

An example of fileupload_info

fileupload_info = (

 (filename = @"c:\tmp\file.txt", name = "file.txt", content_type = "text/plain"),

 (filename = @"c:\tmp\file2.txt", name = "file2.txt", content_type = ct),

 (filename = htmlfile, name = name, content_type = "text/html"),

 (filename = file, name = name, content_type = ct)

)

“http_version” and “reason_phrase” are optional.

117

Effective arguments, which is shown as ‘〇’, and ignored arguments, which is shown as ‘×’,

for each method are listed below.

Table 8-72. Methods and arguments of HTTP2

Argument Methods

 Get Put Post Delete Patch Head

req_header 〇 〇 〇 〇 〇 〇

req_header_file 〇 〇 〇 〇 〇 〇

req_param_multipart × 〇1 〇1 × 〇1 ×

req_param 〇 〇1 〇1 〇 〇1 〇

req_param_file 〇 〇1 〇1 〇 〇1 〇

req_body × 〇1 〇1 〇 〇1 ×

req_body_file × 〇1 〇1 〇 〇1 ×

auth 〇 〇 〇 〇 〇 〇

auth_user 〇 〇 〇 〇 〇 〇

auth_pass 〇 〇 〇 〇 〇 〇

req_cookie 〇 〇 〇 〇 〇 〇

req_cookie_file 〇 〇 〇 〇 〇 〇

fileupload_info × 〇 〇 × 〇 ×

res_header_filetype 〇 〇 〇 〇 〇 〇

res_header 〇 〇 〇 〇 〇 〇

res_header_file 〇 〇 〇 〇 〇 〇

res_body 〇 〇 〇 〇 〇 〇

res_body_file 〇 〇 〇 〇 〇 〇

res_multipartdata_split 〇 〇 〇 〇 〇 〇

res_cookie_filetype 〇 〇 〇 〇 〇 〇

res_cookie 〇 〇 〇 〇 〇 〇

res_cookie_file 〇 〇 〇 〇 〇 〇

1. For the method ‘Put,’ ‘Post,’ or ‘Patch,’ you can specify either the request body or the

parameters, but not both.

The status code is returned to the variable specified in "status_code."

If WinActor.Http2 appears in an assignment or expression, the result will not be stored in the

variable. Specifying the variable to receive the status code is optional. When the assign

statement or expression appears in the WSS output of a flowchart, the variable to set in the

property for the return value is omitted.

118

For details and notes, see the subsection “HTTP (advanced)” in the ”User Library Sample

Manual.”

 Write JSON

WinActor.JsonWrite Preamble

 (

 json_table = JSON value,

 write_file = File path,

 variable = Variable name to receive the result

 use_file = true / false // When true is specified, write_file will be adopted.

)

"JSON value" is expressed as a list in which "key<type> = expression" is separated by

comma.

"Type" is one of the following. If "Type" is string, object, array or null, specify a value as a

string.

If "Type" is Boolean, specify true or false.

Table 8-73. Types for JSON value

Type Description

integer Integer

float Decimal

string String

object Object

array Array

boolean Boolean

null Null

The result is stored in the file specified in "write_file" or the variable specified in "variable."

Specify either "write_file" or "variable." If both are specified, "write_file" will be taken when

“use_file” is true, .and “variable” when “use_file” is false. If both are specified and “use_file”

is omitted, "write_file" will be taken.

If WinActor.JsonWrite appears in an assignment or expression, the result will not be stored

in the variable. Specifying the variable to receive the result is optional. When the assign

statement or expression appears in the WSS output of a flowchart, the variable to set in the

property for the return value is omitted.

Example:

119

i = 128;

 ret = WinActor.JsonWrite [name = "Write JSON", comment = ""]

 (

 json_table = (key_s<string> = "strvalue",

 key_i<integer> = 512,

 key_v<integer> = i,

 key_n<null> = "",

 key_b<boolean> = true,

 key_a<array> = "[1, 2, 3]",

 key_o<object> = "{ x: 12 }")

);

The value of variable "ret" after execution:

"{

 "key_s" : "strvalue",

 "key_i" : 512,

 "key_v" : 128,

 "key_n" : null,

 "key_b" : true,

 "key_a" : [1, 2, 3],

 "key_o" : {

 "x" : 12

 }

}"

 Read JSON

This is to read JSON key values from a file or a variable that stores a JSON object.

WinActor.JsonRead Preamble

 (

 json_table = (Key = variable name, ...),

 read_file = File path string or variable name that stores a file path string,

 variable = variable name

 use_file = true / false // When true is specified, read_file will be adopted.

)

Values are read from the file specified in "read_file" or the JSON object stored in the variable

specified in "variable."

Specify either "read_file" or "variable." If both are specified, "read_file" will be taken when

“use_file” is true, and “variable” when false. If both are specified and “use_file” is omitted,

"read_file" will be taken.

120

For "json_table," specify a key to read a value from the JSON object and a variable name to

store the read value.

The types of JSON values are not required.

 Other JSON libraries

JSON libraries other than "Write JSON" and "Read JSON" are implemented with the Run

Script nodes. See the "Annotation" tab of the property of each Run Script node for details.

 Socket

WinActor.Socket Preamble

 (

 identifier = variable, // connection identifier

 connect = true / false, // use connect function or not

 host = String or variable, // connection destination

 port = Integer or variable, // port number 0 - 65535

 connect_timeout = Integer or variable, // connection timeout by millisecond

 // integer greater than or equal to -1

 connect_exception_name = String or variable, // exception name of connection retry

 send = true / false, // use send function or not

 send_timeout = Integer or variable, // send timeout by millisecond,

 // integer greater than or equal to 0

 send_data_type_file = true / false, // data source is a file or not

 send_data_file = String or variable, // file path of data source

 send_data_value = String or variable, // send data

 send_conv_text = true / false, // use text conversion or not

 send_input_char = input character encoding,

 send_input_newline = input newline code,

 send_output_char = output character encoding,

 send_output_newline = output newline code,

 send_conv_bin = true / false, // convert (base64) to binary data or not

 send_buffer_size = Integer or variable, // send buffer size

 // integer greater than or equal to 0

 send_data_size = Variable, // variable that stores the send data size

 send_shutdown = true / false, // shutdown sending or not

 send_exception_name = String or variable, // exception name of send retry

 receive = true / false, // use receive function or not

 receive_timeout = Integer or variable, // receive timeout by millisecond

 // integer greater than or equal to 0

 receive_data_type_file = true / false, // received data is stored in file or not

 receive_data_file = String or variable, // file path to store the received data

121

 receive_data_variable = Variable, // variable to store the received data

 receive_conv_text = true / false, // use text conversion or not

 receive_input_char = input character encoding,

 receive_input_newline =input newline code,

 receive_output_char = output character encoding,

 receive_output_newline = output newline code,

 receive_conv_bin = true / false, // convert binary data (to base64) or not

 receive_buffer_size = Integer or variable, // receive buffer size

 // integer greater than or equal to 0

 receive_end_condition = condition to end reception,

 receive_data_size = Integer or variable, // receive data size

 // integer greater than or equal to 0

 received_data_size = Variable, // variable to store the received size

 receive_shutdown = true / false, // shutdown receiving or not

 receive_exception_name = String or variable, // exception name of receive retry

 disconnect = true / false, // use disconnect function or not

 disconnect_timeout = String or variable, // disconnection timeout by millisecond

 // integer greater than or equal to -1

 disconnect_exception_name = String or variable // exception name of disconnection retry

)

Set functions to use among the “connect,” “send,” “receive,” and “disconnect.”

Unused functions can also be set, and those settings are stored. When setting a variable for

a setting item of an unused function, the variable still needs to be declared. For example,

although “send = false, send_data_type_file = true, send_data_value = variable” means that

the send function is unused and the send data is obtained from a file, the variable still needs

to be declared.

When the source of the send data is a variable or a string value, which means

"send_data_type_file = false," the only character encoding that can be set to the

‘send_input_char’ is $SOCKET.CharASCII.

When the destination of the received data is a variable, which means "receive_data_type_file

= false," the only character encoding that can be set to the ‘receive_output_char’ is

$SOCKET.CharASCII.

The connection identifier ‘identifier’ is required to set, but other items are optional. The default

values are listed on the table below.

Table 8-74. Default values

Argument type Default value

true / false false

122

Argument type Default value

String or variable Empty string

Variable Anonymous identifier

Port number 0

Timeout 10,000 (ms)

Input/output buffer size 8,192

Input/output character encoding $SOCKET.CharASCII

Input/output newline code $SOCKET.NewLineCRLF

Condition to end reception $SOCKET.EndFin

Receive data size 0

Exception name of retry $SOCKET.ActionException

However, arguments are required for some items on some conditions.

Table 8-75. Items that require arguments

Item that requires an argument Condition to require an argument

host connect = true

port connect = true

send_data_size send = true

received_data_size receive = true

receive_data_size Receive_end_condition = $SOCKET.EndSize

When “send_data_type_file = true” is set, the file path specified for “send_data_file” by string

or via variable indicates the file that is the source of send data. When “send_data_type_file

= false” is set, the value specified for “send_data_value” by string or via variable is the send

data.

When “receive_data_type_file = true” is set, the file path specified for “receive_data_file” by

string or via variable indicates the file that is the destination of received data. When

“receive_data_type_file = false” is set, the variable specified for “receive_data_variable” is

the destination of received data.

The send text conversion “send_conv_text” and the send binary data conversion

“send_conv_bin” cannot be set both true. Also, the receive text conversion

“receive_conv_text” and the receive binary data conversion “receive_conv_bin” cannot be

set both true.

123

The character encodings that can be set for “send_input_char,” “send_output_char,”

“receive_input_char,” and “receive_output_char” are predefined constants listed on the table

below, IANA character set names, and code page numbers. A code page number is specified

with an integer from 0 to 65,536. When a character encoding specified by IANA character set

or code page number is not supported on the running environment, it is warned and

$SOCKET.CharASCII is regarded as the specified encoding.

Table 8-76. Character encodings

Predefined constant Remarks

$SOCKET.CharASCII

$SOCKET.CharUTF-16LE little endian, without BOM

$SOCKET.CharUTF-16LE-BOM little endian, with BOM

$SOCKET.CharUTF-16BE big endian, without BOM

$SOCKET.CharUTF-16BE-BOM big endian, with BOM

$SOCKET.CharUTF-8 without BOM

$SOCKET.CharUTF-8-BOM with BOM

$SOCKET.CharShift-JIS Code page 932

$SOCKET.CharEUC-JP Code page 51932

The newline codes that can be set for “send_input_newline,” “send_output_newline”,

“receive_input_newline,” and “receive_output_newline” are predefined constants listed on

the table below.

Table 8-77. Newline codes

Predefined constant Remarks

$SOCKET.NewLineCRLF

$SOCKET.NewLineCR

$SOCKET.NewLineLF

$SOCKET.NewLineNONE If this is set for “send_output_newline,” or

“receive_output_newline,” the newline code at the

end of data is removed before sending or storing.

The conditions to end reception that can be set for “receive_end_condition” are predefined

constants listed on the table below.

Table 8-78. Conditions to end reception

Predefined constant Remarks

$SOCKET.EndFin until FIN is received

$SOCKET.EndSize until the number of octets specified for

“receive_data_size” is attained

$SOCKET.EndEmpty until no readable data remains

124

The retry exception names that can be set for ‘connect_exception_name,’

‘send_exception_name,’ ‘receive_exception_name,’ and ‘disconnect_exception_name’ are

$SOCKET.ActionException and other strings of exception names. When

$SOCKET.ActionException is specified, “アクション例外” (Japanese) or “ActionException”

(English) is used depending on the language setting at the time of loading the WSS scenario.

If an empty string is set as an exception name, no exception is raised and the scenario

continues.

125

 Libraries not listed in the adapter actions

Libraries not described in the adapter actions are implemented with the Run Script nodes or

subroutines.

These libraries can be used by placing them in WSS-enabled scenarios in WinActor.

By saving the created WSS-enabled scenario in a file, these libraries will be saved in wss7

and uss7 files.

126

9. Notes on restoration of expressions

In the WinActor scenarios loaded from the WSS, translated expressions may include some

additional working variables and nodes. Saving such a scenario back to the WSS, original

expressions were divided and became ugly to read through

To mitigate this problem, mechanisms to remove working variables and additional nodes and

to restore expressions to the near original state have been introduced.

However, if a working variable is edited and reused by a user on the “Flowchart” area of

WinActor, the expressions restored on the WSS may look far different from the expressions

the user intends. Therefore, the working variables that meet any of following conditions are

left intact on the restored WSS.

 Conditions to leave the working variable or the additional node intact

 A node which refers to the working variable is added.

 The working variable is newly referred to read a value.

 Referrer: All inputs where “Value or variable”, or “Variable” is required.

 A node to assign something to the working variable is added.

 The working variable is newly set to the destination of assigning a value

 Destination: the destination variable of the following return of a node.

 the returned variable $...$ from VB in the “Run Script” node.

 the return value of the “Call Subroutine” node.

 the return value of the “Exit Subroutine” node.

 the return value of the “Call Scenario File” node.

 the return value of the “Exit Scenario” node.

 A sticky note is attached to the node which is added at the time of loading the

WSS.

 A breakpoint is set at the node which is added at the time of loading the WSS.

 The working variable set as a local variable in the “Call Subroutine” node is

assigned an initial value or a variable in the property of the node.

 The working variable is deleted from the “Local variable list (variables to restore

the initial value at the end)” settings in the property of the “Subroutine Group”

node.

 The working variable is specified in the return setting of the “Call Scenario File”

node.

127

 Conditions to leave working variables intact without user modifications

 The working variable occurred in the “conditional expression” of the “Loop

condition” of the “while” or the “dowhile” statement.

 The working variable occurred in the “End” expression of the “Loop condition” of

the “while” or the “dowhile” statement.

 If the “conditional expression” of the “Case statement” in the “Switch statement”

has working variables and has been converted to the “IF statement” (the

“Decision” node on WinActor), the “Switch statement” cannot be restored.

 The working variable occurred in an anonymous subroutine.

 If a working variable used in a called scenario is specified in the “Variables

inherited from the destination” of the “Call Scenario File” node, it may not be

inherited when the working variable is deleted in the restoration process.

 The working variables which was in the “Floating part” of the original WSS

remains if the part is converted to a subroutine on the scenario of WinActor.

Programming Language

WinActor Scenario Script

NTT ADVANCED TECHNOLOGY CORPORATION

Copyright © 2013-2025 NTT, Inc. & NTT ADVANCED TECHNOLOGY CORPORATION

This document is protected under copyright law. It is forbidden to duplicate or copy any part or all of this document

without prior consent.

The contents of this document are subject to change without notice.

WA7-U-20250603

	Trademarks
	 WinActor is a registered trademark of NTT ADVANCED TECHNOLOGY CORPORATION.
	 Microsoft, Windows*1, Internet Explorer, Excel, and VBScript*2 are trademarks or registered trademarks of Microsoft Corporation in the United States and other countries.
	 The names of other companies and products are trademarks or registered trademarks of their respective companies.

	About this document
	Notes on this manual
	 The copyright notice "Copyright © 2013-2025 NTT, Inc. & NTT ADVANCED TECHNOLOGY CORPORATION" attached to this manual and the provided software cannot be changed or deleted. The copyright of this manual belongs to NTT, Inc. and NTT ADVANCED TECHNOLOG...
	 The descriptions in this manual assume that users understand Windows operations and functions. For information that is not described in this manual, see the documents provided by Microsoft.
	 This manual assumes that users are using Windows 10.

	Contents
	1. Introduction
	2. Terminology
	3. Symbols and symbol strings
	4. Data types
	4.1 Comment
	4.2 Number
	4.3 Boolean
	4.4 Identifier
	 Naming conventions for identifiers
	 Reserved identifier
	 Special identifier
	 Predefined constant identifier
	 Action name

	4.5 String
	 String literals
	 Naming conventions for strings

	4.6 Structure
	4.6.1 Preamble
	 How to write a preamble
	 Example of a preamble

	4.6.2 Adapter parameter list
	 How to write an adapter parameter list
	 Examples of adapter parameter lists

	4.6.3 Verbatim tuple
	 How to write a verbatim tuple
	 Example of verbatim tuples

	4.6.4 Const tuple
	 How to write a constant tuple

	5. Scenario
	5.1 Scenario composition
	5.2 Variable part
	 Syntax
	 Description
	5.2.1 Variable declaration
	 Syntax
	 Description

	5.3 Window match rule part
	 Syntax
	 Description
	5.3.1 window_title const tuple
	 Syntax
	 Predefined constants that can be specified in "rule"

	5.3.2 window_class const tuple
	 Syntax
	 Predefined constants that can be specified in "rule"

	5.3.3 process_name const tuple
	 Syntax
	 Predefined constants that can be specified in "rule"

	5.3.4 window_size const tuple
	 Syntax
	 Predefined constants that can be specified in "rule"

	5.3.5 Example of the window match rule part

	5.4 Main part
	 Syntax
	 Description

	5.5 Floating part
	 Syntax
	 Description
	 Example of the floating part

	5.6 Subroutine part
	 Syntax
	 Description

	5.7 WinWatcher part
	 Syntax
	 WinWatcher actions
	 Description
	 Example of the WinWatcher part

	5.8 EventWatcher part
	 Syntax
	 Event trigger condition
	 Event trigger condition parameters
	 Call action parameters
	 Description
	 Example of the EventWatcher part

	5.9 Breakpoint information part
	 Syntax
	 Description
	 Example of the breakpoint information part

	5.10 Scenario information part
	 Syntax
	 Description
	 Example of the scenario information part

	5.11 Image part
	 Syntax
	 Description
	5.11.1 Image declaration
	 Syntax
	 Attributes

	5.11.2 Example of image declarations

	5.12 Flowchart information part
	 Syntax
	 Description
	 Example of the flowchart information part

	5.13 Word dictionary part
	 Syntax
	 Description
	 Example of the word dictionary part

	6. Statement
	6.1 Description
	6.2 Group statement
	 Syntax

	6.3 if statement
	 Syntax

	6.4 while statement
	 Syntax
	6.4.1 Loop condition
	 Syntax

	6.5 dowhile statement
	 Syntax
	6.5.1 Loop condition

	6.6 switch statement
	 Syntax
	6.6.1 Case statement
	 Syntax

	6.6.2 Default statement
	 Syntax

	6.7 try statement
	 Syntax
	6.7.1 catch statement
	 Syntax

	6.8 return statement
	 Syntax

	6.9 scenario return statement
	 Syntax

	6.10 break statement
	 Syntax

	6.11 continue statement
	 Syntax

	6.12 Call subroutine statement
	 Syntax

	6.13 Call scenario statement
	 Syntax

	6.14 Adapter action statement
	 Syntax

	6.15 Assignment statement
	 Syntax

	6.16 Four arithmetic operations

	7. Expression
	7.1 Factor
	 Syntax

	7.2 Constant expression
	7.2.1 Binary operators for constant expressions
	7.2.2 Constant factors
	 Syntax

	7.3 Conditional expression
	7.3.1 Binary operators for conditional expressions
	7.3.2 Conditional expression factors
	 Syntax

	8. Adapter actions
	 Syntax
	8.1 Automatic recording
	8.1.1 Event recording – Click
	8.1.2 Event recording – Set Text
	8.1.3 Event recording – Select Item in List
	8.1.4 Event recording – Select Tab
	8.1.5 Event recording – Emulate
	8.1.6 Event recording – Get String
	8.1.7 Event recording – Get Item in List
	8.1.8 Event recording – Get Check State
	8.1.9 Event recording – Get Enable/Disable State
	8.1.10 Event recording – Get All Items in List
	8.1.11 UIAutomation
	8.1.12 UIAutomation library
	8.1.13 UIAutomation dump

	8.2 Automatic recording (IE)
	8.2.1 IE mode recording – Click
	8.2.2 IE mode recording – Set Text
	8.2.3 IE mode recording – Select Item in List
	8.2.4 IE mode recording – Get String
	8.2.5 IE mode recording – Get Item in List
	8.2.6 IE mode recording – Get Check State
	8.2.7 IE mode recording – Get Enable/Disable State
	8.2.8 IE mode recording – Get Value in Table
	8.2.9 IE mode recording – Get All Items in List

	8.3 Action, User, Variable
	8.3.1 Image Matching
	8.3.2 Contour Matching
	8.3.3 OCR Matching
	8.3.4 Wait for Window Status
	8.3.5 Wait for Time
	8.3.6 Send Text
	8.3.7 Execute Command
	8.3.8 Run Script
	8.3.9 Run Python
	8.3.10 Excel Operation
	8.3.11 Clipboard
	8.3.12 Set To Clipboard
	8.3.13 Get From Clipboard
	8.3.14 Waiting Dialog
	8.3.15 Input Dialog
	8.3.16 Selection Dialog
	8.3.17 Sound (Buzzer)
	8.3.18 Sound (WAVE file)
	8.3.19 Set Variable Value
	8.3.20 Copy Variable Value
	8.3.21 Get Date and Time
	8.3.22 Get Username
	8.3.23 Four Arithmetic Operations
	8.3.24 Count Up
	8.3.25 Full/Half-Width Conversion
	8.3.26 Watch Events
	8.3.27 Register EventWatcher
	8.3.28 Cancel EventWatcher
	8.3.29 Ignore Events

	8.4 WinActor Mail, HTTP, JSON
	8.4.1 Mail Reception Settings
	 Mail reception conditions "mail_rule_info"

	8.4.2 Receive Mail
	8.4.3 Select Mail
	8.4.4 Change Mail State
	8.4.5 Synchronize Mail Folder
	8.4.6 Delete Processed Mail
	8.4.7 Delete Mail
	8.4.8 Copy Mail Information
	8.4.9 Get Attached Filename
	8.4.10 Get Mail Information
	8.4.11 Import Mail Reception Settings
	8.4.12 Gmail Reception Settings
	 Mail reception conditions “mail_rule_info”

	8.4.13 Receive Gmail
	8.4.14 Gmail Send Settings
	8.4.15 Send Gmail
	8.4.16 HTTP
	8.4.17 HTTP (Advanced)
	8.4.18 Write JSON
	8.4.19 Read JSON
	8.4.20 Other JSON libraries
	8.4.21 Socket

	8.5 Libraries not listed in the adapter actions

	9. Notes on restoration of expressions
	 Conditions to leave the working variable or the additional node intact
	 Conditions to leave working variables intact without user modifications

